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Motivation 

Discrete Local Volatility: 
ï Given a potentially sparse set of strikes and maturities we construct the transition 

matrices of a discrete state martingale, which has the following properties: 
 

1. Fixes Arbitrage: 
If the input data is arbitragable - for example during Stress calculations -, we 
find efficiently a globally L1-closest fit to the input data, with higher weights for 
observed market prices vs. interpolated data or points with large bid/ask. 
This method is useful independently in order to manage arbitrage violations. 

 

2. Large Steps: 
Allows taking large steps, fully consistently between forward (MC) and 
backward (FD) schemes. 
 

3. Small Steps: 
Allows taking small steps, fully consistent with the large step transition 
operators. 
 

4. Risk by Strike: 
Our approach allows for a clear definition and implementation of Vega risk by 
strike/maturity. 
 

ï We apply our approach to pricing under affine dividends and we comment on 
introducing skew with jumps 
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5ǳǇƛǊŜΩǎ Local Volatility 

Setup: 

ïAssume we are given an equity S with 

ÁDiscount Factors DFt for all t Í [0,¤). 

ÁForwards Ft for all t Í [0,¤). 
ÁA continuous volatility surface, or equivalently, a surface of European 

Call prices Call(t,K) for all t Í [0,¤) and cash strikes KÍ (0,¤)  

 

Objective: 

ï5ŜŦƛƴŜ ŀƭǎƻ άǇǳǊŜέ Ŏŀƭƭ ǇǊƛŎŜǎ C(t,k) := Call(t,k Ft)/DFt.  
We aim to derive an arbitrage-free pricing model St=FtXt for a diffusion 
Xt ǿƘƛŎƘ άŦƛǘǎέ ǘƘŜ ƳŀǊƪŜǘ ƛƴ ǘƘŜ ǎŜƴǎŜ ǘƘŀǘ 
 
 
or, equivalently, that 

[ ] ),()(E DF KtCallKStt =- +

[ ] ),()(E ktCkXt =- +
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5ǳǇƛǊŜΩǎ Local Volatility 

5ǳǇƛǊŜΩǎ Classic Local Volatility: 
ï¢ƘŜǊŜ ƛǎ ŀ ǳƴƛǉǳŜ Ŏƻƴǘƛƴǳƻǳǎ aŀǊƪƻǾ άƭƻŎŀƭ Ǿƻƭŀǘƛƭƛǘȅέ ǇǊƻŎŜǎǎ X of the form 

 
 
 
where W is a driving Brownian motion. 
We now use Ito inside the expectation operator to show 
 
 
 
 
 
 
Hence our local volatility s  ƛǎ ƎƛǾŜƴ ōȅ 5ǳǇƛǊŜΩǎ ŦŀƳƻǳǎ Ψфс ŦƻǊƳǳƭŀ ώ5фсϐ 
 
 
 
 
with 
ÁForward-Theta fQ(t,k):=C(t+dt,k) ï C(t,k); and 
ÁGamma  G(t,k) := µkkC(t,k). 
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This definition of Gamma 
represents the second order 

derivative of the option price in 
strike, not spot. It only 

coincides with the latter under 
the assumption of a sticky 

strike implied volatility surface 
ς which is not compatible with 
any known dynamic martingale 

model. 

].[E )(

])([E 0

][E]1[E])([E

22

2
1

22

2
1

2

2
1

kXt

tttkX

tkXtkXt

t

t

tt

dtkk

XXdt

XddXkXd

=

=

=>

+

=

+=

+=-

ds

sd

d



Q
 U

 A
 N

 T
 I
 T

 A
 T

 I
 V

 E
  
R

 E
 S

 E
 A

 R
 C

 H
 

6 

Practical Usage and Limitations 

Absence of Arbitrage: 
ïRecall the formula 

 
 
 
with 
ÁForward-Theta fQ(t,k):=C(t+dt,k) ï C(t,k); and 
ÁGamma  G(t,k) := µkkC(t,k). 

 
ïWe call the option price surface C or its implied volatility surface Dupire-

arbitrage-free if s is non-negative, real and bounded, i.e. if 
ÁBoth fQ and G are non-negative, and  
ÁfQ is zero whenever G is. 
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There are a few additional 
technical conditions to 

strictly ensure existence of 
a solution to 

dXt=Xtst(Xt)dWt but those 
are not really relevant in 

practice and not pertinent 
to the discussion here. 
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Practical Usage and Limitations 

Summary of Steps when using Local Volatility: 

 

 Discrete, sparse market data 

Interpolate using Implied Volatility 
Scheme which may exhibit arbitrage 

Cƛǘ 5ǳǇƛǊŜΩǎ [ƻŎŀƭ ±ƻƭŀǘƛƭƛǘȅ 
 

Bootstrap with FD if arbitrage is found 
e.g. under Stress or if dividend 

assumptions are changed. 

Price  product with daily time steps 
even if only large steps are required 

The Volatility Surface is only 
observed at discrete strikes 
for listed maturities, 
typically at least 1M, mostly 
3M wide. 

5ǳǇƛǊŜΩǎ Local Volatilty 
calibration is not robust 
vs. errors in arbitrage. 
 
A solution is to 
άōƻƻǘǎǘǊŀǇέ ǘƘŜ ƭƻŎŀƭ 
volatility function with 
FD to be able to recover 
from local errors in the 
implied volatility surface. 

CƛǊǎǘ Ŧƛǘ ŀƴ άLƳǇƭƛŜŘ ±ƻƭŀǘƛƭƛǘȅέ 
scheme to those discrete 
volatilities to generate a 
continuous surface. 
However, no such is scheme is 
known which is truly arbitrage-
free and fits well to most 
observed market data. 

Local Volatility requires us to 
simulate the resulting process 
with small time steps in order 
ǘƻ ōŜ ŀōƭŜ ǘƻ άŦƛǘέ ǘƘŜ ƳŀǊƪŜǘ ς 
even if the actual product does 
not require dense time steps 
for valuation. 

Computing strike wise risk very noisy 

Computing strike-wise 
risk is noisy due to 
impact of local arbitrage 
during shifts. 



Absence of Arbitrage 
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Discrete Local Volatility 

Assumptions: 
ï Maturities 

Assume we are given listed maturities 0=t0<é<tm. 
Set dtj

+:=t j+1-tj and dtj
-:=t j-tj-1. 

 
ï Strikes 

For each maturity tj, we are given nj strikes kj
-1<é1é<kj

nj. 
We will drop the subscript j wherever possible, e.g. we define 
dk+

i:=k i+1-ki and dk-
i:=k i-ki-1. 

We also add arbitrary ghost strikes k-2<k-1 (which might be negative) and kn+1>kn.  
 

ï Market Prices 
For each strike and maturity, we are given input market call prices 
Cj

i := C(tj,kj
i). 

 
Definitions: 

ï Model Prices 
We will use generally cj

i := c(tj,kj
i) to refer to model prices. 

We impose that all model prices are intrinsic at the boundary strikes k-2,k-1 and kn,kn+1. 
 

ï Quality of Fit 
Using positive weights wj

i which sum up to 1, we define the norm 
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Absence of Arbitrage 

Algebra for Discrete Martingales in Strikes: 

ï Assume p=(pi) is a discrete density over strikes k=(ki) 
Its call prices on the given strikes are given in terms of the linear 
integral-type operator J2 as 
 
 

ï Its inverse operator over call prices c is given as by applying the 
operator D2 given as: 
 
 
 
 
The operator D2 is related to the classic second order difference operator D2 by 
 
 

ï Gamma is as usual defined as 
 
 

 
Theorem (Absence of Arbitrage for one Maturity [BR15]) 

ï Let cj be candidate call price function which is intrinsic at the boundary strikes as defined before. If Gj²0, 
then cj is arbitrage-free in the sense that 
 
 
is a density.  
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Absence of Arbitrage 

Algebra for Discrete Martingales in Time: 

ïAssume p=(pj
i) is a discrete density over strikes k=(kj

i) with call prices c=(cj
i). 

Recall that we allowed for different strikes per maturity.  
We denote by  
 
 
the call prices for off-grid strikes. We note that 
this is equivalent to linear interpolation in call prices. 

ï Forward-Theta is defined as 
 
 

ïBackward-Theta is defined as  
 
 
 

Theorem (Absence of Arbitrage [BR15]) 

ïAssume that for each maturity j, cj is arbitrage-free with density pj. 
Then, the surface c is arbitrage-free in the sense that there is a discrete 
martingale X with marginal densities pj if and only if bQ²0. 

ï The conclusion does not hold for fQ²0. 
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Absence of Arbitrage 

This is a case 
where Forward-

Theta is 
positive, but 
the surface is 
clearly not 

arbitrage-free Positive 
Forward-Theta 

Positive 
Forward-Theta 

Negative 
Backward-
¢ƘŜǘŀ Χ ŀƴŘ 

arbitrage 
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Absence of Arbitrage 

Find the Closest Arbitrage-Free Surface [BR15] 
ïA call price surface is arbitrage-free in the sense that there exist a 

martingale which fits c if and only if the two linear conditions on c hold: 
1. Gj²0 

2.  bQ²0 
 

ïAssume that C are given market prices with weights w.  
Then, we may find a closest arbitrage-free surface by solving the linear 
program 
 
 
 
over the set c which have intrinsic value at the boundary strikes. 
ÁIt is straight forward to impose bounds on implied volatility. 
ÁOther norms than L1 can easily be used. 

 
ïNote that the conditions 1. and 2. above do not imply that 5ǳǇƛǊŜΩǎ local 

volatility exists. 
In particular, we do not exclude the case where Gj

i=0 while bQj
i>0. 
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Example of Fixing Arbitrage 



Discrete Local Volatility 
Construction of Discrete Martingales 
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Step 1: Time Interpolation 

Step 1: Interpolation in time 

ï Fix j-1 and consider the call prices cj-1 defined over kj-1 

1. Compute call prices ccj-1 using the current density pj-1for new strikes kj as: 
 
 

2. Define the associated interpolated density qj-1 again for strikes kj 
consistently as: 
 

 

ï Both operations are linear and jointly define a linear operator which maps the 
density pj-1 defined over strikes kj-1 into the density qj-1 defined over kj: 
 
 
Obviously,  if kj=kj-1, then pj-1=qj-1. 

 

Theorem (Interpolation using a martingale kernel) [BR15] 

ï X is a transition kernel, i.e.  

Á X is a probability matrix: 1Xj=1 and Xj²0. 

Á It is a transition matrix qj-1=Xj pj-1. 

Á It is a martingale kernel kj+1Xj=kj. 
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All of these 

calculations are 
simple algebra 

and can virtually 
be done on a 
spread sheet. 
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Step 1: Time Interpolation 

Interpolated 
density, for 

reasonable time 
steps 

Interpolated 
density, for 

large time steps 
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Step 2: Transition Operators 

Step 2: Transition operators from Implicit FDs 

ïAssume now that strikes are homogeneous between tj-1 and tj. 

ÁDefine prior model: recall the equation dXt=Xtst(Xt)dWt. 
Its density p(t,x):= P[Xt=x] satisfies the forward-PDE 
 
 

ÁImplicit FD: discretize in time using an implicit scheme for  
pj(x):=p(tj,x): 
 
 
 
 
Standard FD discretization in space yields the tridiagonal matrix 
 

{ }dtxtxxxtd txx ),()(
2

1
),( 222 psp µ=

{ }-- µ=- dtxxxxx jjxxjj )()(
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Step 2: Transition Operators 

Discretization of Forward-PDE matrices: 

ï Note that when discretizing 
 
 
 
we do not expand the second order derivative in separate derivatives of x2s(x)2 and ¶ 
as was proposed in [AH11], but we discretize it as is. 

ï In this form, it is worth noting that I is actually just the transpose of the backward FD 
operator BI defined on the same grid via 
 
 
 

ï In other words, this discretization scheme is consistent for forward and backward 
operators. 
We more generally have: 
 

Theorem (consistent forward and backward operators)  [BR15] 

ï The backward operator of a diffusion with unattainable boundaries is the adjoint 
(transpose) of its forward operator. 

ÁThe same is true for a finite state Markov chain, i.e. forward and backward 
operators are consistent if the density has a Neumann-boundary condition. 

 
 

{ }¶-=- 2221 )(
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Step 2: Transition Operators 

Theorem (Z-Matrix) see also Andreasen-Huge [AH11] 

ïAssume that M is a square matrix whose columns [rows] add up to 1, and 
where all off-diagonal elements are non-positive. 
Then, its inverse exists, is non-negative, and its columns [rows] add up to 
1; in other words Mī1 is a transition matrix. 
(see [BR15] for a brief proof) 

 

 

 

 

 

 

 

ïOur tridiagonal matrix 
 
 
does indeed fit this description, hence I is a transition kernel for p. 

{ }¶-=- 2221 )(
2

1
1: xxDI jxxj s

1 -a 

1+a+b -a 

-b 1+a+b -a 

-b 1+a+b 

-b 1 

Illustration 
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Step 2: Transition Operators 

Backward Local Volatility 

ïHow does that help? 
Most likely the discretized p is not even a density. 
We now aim to find a local volatility s such that pj=I jpj-1 for the given 
model densities (recall that we currently assume homogeneous strikes). 

ïTo this end, we write the FD out, which gives: 
 
 
 
We now apply the inverse integral operator Jxx

2 such that 
 
 
 
which gives rise to the definition of backward local volatility as: 
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Step 2: Transition Operators 

Theorem (Bounded Discrete Local Volatility) [BR15] 

ï Let c be a call price surface which is intrinsic at the boundaries, and which 
satisfies for 0 ¢ smin < smax

 the linear constraints 

1.G²0 and 

2. ½ G k2 dt smin
2 ¢ bQ ¢ ½ G k2 dt smax

2  

ï Then, c is arbitrage free, and the transition matrix from pj-1 to pj is given by 
 
where 

ÁX is given by the interpolation operator defined before; and 

ÁI is the well-defined inverse of the tridiagonal matrix I-1 given as 
 
 
 
with bounded άōŀŎƪǿŀǊŘ ƭƻŎŀƭ Ǿƻƭŀǘƛƭƛǘȅέ s. 

ïMoreover, conditions 1. and 2. above are linear, hence for a given market 
surface C we may find a closest arbitrage-free surface with bounded 
backward local volatility by solving the appropriate linear program. 
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Step 3: Small Steps 

Small steps 

Large steps 
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Step 3: Small Steps 

Step 3: Small Steps 

ï We have constructed a discrete martingale for our reference time steps, for example listed 
maturities. 

ÁHow do we price options which require more frequent or non-standard observations? 

ÁRecall that our transition operator is given as 
 
 

ÁSince I is positive definite, we may write it in terms of a unitary matrix X and a diagonal 
matrix D as 
 
Hence, for any positive a we may write 
 
 

ÁFor any tj-1<t< tj, let a:=(t -tj-1)/(tj-tj-1) and define the two transition matrices 
 
 
whose product, obviously, is again I. 

Result 

ï In other words, we have constructed transition operators from tj-1 to t, and from t to tj, 
which are consistent with the overall operator from tj-1 to tj. 

jjj I X=P :

jjjj XDXI aa ':=

jjjj XDXI ':=

j

a

jj

j

tj

a

jj

t

j XIXIIXIXII -

- == 1

1 ':        ':

Quick, since I j
-1 

is tridiagonal. 


