
Volatility and Dividends
Volatility Modelling with Cash Dividends and simple Credit Risk

Hans Buehler

Institut für Mathematik, MA 7-4
TU Berlin, Strasse des 17. Juni 136

10623 Berlin, Germany
e-mail: buehler@math.tu-berlin.de

Draft 1.21 Feburary 2nd, 2010 - first draft March 2007

Abstract

This article shows how to incorporate cash dividends and credit risk
into equity derivatives pricing and risk management. In essence, we show
that in an arbitrage-free model the stock price process upon default must
have the form

St = (F ∗t −Dt)Xt + Dt

where X is a (local) martingale with X0 = 1, the curve F ∗ is the “risky”
forward and D is the floor imposed on the stock price process in the
form of appropriately discounted future dividends. This has already been
shown in [1].

We show that the method presented is the only such method which is
consistent with the assumption of cash dividends and simple credit risk.
We discuss the implications for implied volatility, no-arbitrage conditions
and we derive a version of Dupire’s formula which handles cash dividend
and credit risk properly.

We discuss pricing and risk management of European options, PDE
methods and in quite some detail variance swaps and related derivatives
such as gamma swaps, conditional variance swaps and corridor variance
swaps. Indeed, to the our best if our knowledge, this is the first article
which shows the correct handling of cash dividends when pricing variance
swaps.

Keywords: Equity Volatility, Dividends, Credit Risk, Default, Implied Volatil-
ity, Local Volatility, Variance Swaps
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1 General Setup

This article is about the very basics of equity modelling: the consistent incorpo-
ration of basic economic quantities into a simple, but efficient model of a share
price process S = (St)t∈R+ for the purpose of derivative pricing. We will focus
on the following key ingredients into an asset’s price evolution:

� The underlying interest rates.

� Borrowing (“repo”) costs.

� Default risk.

� Dividends.

� The volatility structure.

We will take a pretty simplifying approach regarding most of these insofar as
we assume that interest and borrowing rates, as well as default probabilities are
deterministic and known in advance.

We will also use a particularly simple structure for the dividends of the stock:
we assume that there is a series 0 = τ0 < τ1 < τ2 < · · · of dividend dates, at
each of which a proportional and then a fixed cash dividend is paid. We denote
the proportional dividends by βj and the cash dividends by αj . That means
that at any dividend date the holder of one share receives dividends worth a
cash value of Sτj−βj +αj ; we use Sτj− to refer to the stock price just before the
payment of the dividend.1 Obviously, a dividend is only paid if the stock does
not default up to the dividend date.

In the absence of tax imbalances, no-arbitrage arguments show that at any
ex dividend date τj our share price process S = (St)t with a value of Sτj− just
before the dividend date must drop according to

Sτj = Sτj−(1− βj)− αj . (1)

In practise, the jump will occur at the opening of trading at the ex-dividend day.
The non-trading period between the close and the open can either be modelled
using zero volatility or by scaling time accordingly, i.e. by modelling the asset
in its business time. The former has the advantage to allow more easily for
multi-asset structures which are traded in different time zones.

2 Cash Dividends in Equity Modelling

The first step is now to derive a general structure of equity share price models
which are consistent with the setting we introduced above. Note that we are not
intend to approximate a solution; rather, we derive the effects of introducing
cash dividends for a share price process using purely no-arbitrage arguments.

1Note that we make the simplifying assumption that record date, ex-dividend date and
payment date for the dividend all coincide.
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The deterministic instantaneous interest rate is denoted by r = (rt)t. That
means that the price at time t of a risk-free zero coupon bond with maturity T
is given as

P (t, T ) = e−
∫ T
0 rs ds .

Such a bond cannot default. In contrast, if the company issues a corporate zero
bond (which will have zero recovery for the purpose of this article), an investor
will demand a higher yield in compensation for the risk that the notional may
actually not be paid.

Intuitively, in a market with diversifiable risk, we would expect the price of
a risky bond to be equal to the price of a riskless bond times the (risk-neutral)
probability of “survival” up to the maturity T of the instrument. Indeed, this
is the case in our setup, which means that the value of a “risky” company bond
provided it has not yet defaulted is given by

PS(t, T ) = P (t, T ) SV(t, T ) ,

where SV(t, T ) is the risk-neutral probability of survival up to T . At any point t,
the function T 7→ SV(t, T ) is usually extracted from Credit Default Swap (CDS)
market prices. We write the survival probability function often as

SV(t, T ) = e−
∫ T

t
hs ds

for some positive credit spread or hazard rate h = (ht)t. Since the default
probabilities of the company for all maturities T are deterministic, h is also
deterministic.

It is worthwhile noting that our inherent assumption by modelling default in
this way is that we can not anticipate the default event itself by observing some
publicly know variables (such as, say, the leverage of the company), but that
the default is a sudden event (a fraud case, a sudden failure to honor a coupon
payment on a bond etc). Mathematically, we say that the random default time τ
is “inaccessible”, which means it cannot not be the time at which some publicly
observable variable such as the firm’s debt hits a barrier.2

In general, it is far from obvious what exactly happens to a share price when
such a default event occurs, but for sake of simplicity we will assume here that
it drops to zero which makes our subsequent discussion particularly easy.

2.1 Consistent Share Price Processes

Assume that at some time t > 0, the stock has not yet defaulted and that we
wish to enter into a forward contract with a maturity T . The standard way
to compute the fair strike of the contract is by replication arguments: by re-
investing all “relative” proceeds from holding the stock (repo and proportional
dividends) to buy more shares, and by forward-selling the cash dividends we

2See Blanchet-Scalliet and Jeanblanc [2] for a detailed account on handling credit risk with
intensities and Bermudez et al. [1] for the link with equity.
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would receive from holding these shares, it is straightforward (and shown in
appendix A.1) that the the fair strike of the forward contract must be

F (t, T ) =


R(t, T )St −

∑

j:t<τj≤T

R(τj , T ) αj


SV(t, T ) , (2)

where we used the “proportional growth factor”

R(t, T ) := e
∫ T

t
(rs+hs−µs) ds

∏

j:t<τj≤T

(1− βj) .

We will often abbreviate

Ft := F (0, t) and Rt := R(0, t) .

Note that the above formula (2) takes into account the possibility of a default
after t and before T . One should note, in particular, that the forward strike
differs from the standard Black&Scholes result in the presence of cash dividends
and credit risk.

Given that a share bears no liability for the holder, the share price St can
not become negative. This implies also that the forward can not be negative,
because we would otherwise exchange at the maturity of the contract a negative
cash amount for a share which will never have a negative value. That would
clearly be an arbitrage situation. In other words, the forward is positive.

If we now apply this rather obvious observation to (2) and re-arrange for the
stock price, then we obtain the condition

St ≥
∑

j:t<τj≤T

R(t, τj) αj .

for t > τ . Since this condition holds for all T , we have just shown:

Proposition 2.1 The value St of a stock can never fall below a floor given by
the “growth rate-discounted” value of all remaining future cash dividends in the
sense that

St ≥ Dt where Dt :=
∑

j:τj>t

αj

R(t, τj)
{
τ > t

}
. (3)

This means that the share price process S = (St)t is floored by the deterministic
process D = (Dt)t.

This condition is also economically very sensible: the value of a share should
always exceed the “growth rate-discounted” expected value of all forthcoming
dividends, in particular if these are tradable via dividend swaps or calendar
spreads of zero-strike calls.

While being economically sensible, it also imposes a new way of looking
at the mathematical modeling of a share price process: given that the stock
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price at time t cannot be below Dt > 0, it does not make sense to model
it as a random process which can get arbitrarily close to zero, such as the
Black&Scholes model SBS

t := FtX
BS
t where XBS

t := exp
{
σ(t)Wt − 1

2σ(t)2t
}

with volatility σ and Brownian motion (Wt)t≥0. Instead, the processes is much
easier modeled consistently if a “stochastic model” such as XBS is applied only
to the remaining quantity at any time t which is exactly Ft−Dt (without credit
risk). This is the only portion of the stock price which is really random.

Assuming that X represents our general stochastic “volatility” model (i.e. lo-
cal martingale), the key result of this article – and the related material in [1] –
therefore really is the observation that the only consistently way to achieve this
while making sure that the forward is priced correctly according to equation (2),
is

St =
{

(F ∗t −Dt)Xt + Dt

}
1t<τ , (4)

where we have use the “risk forward” F ∗t := Ft/SV(0, t), which is the fair strike
of a forward which only settles if the company has not yet defaulted. This is
explicitly stated in the following theorem.
The proof is presented on page 32 in appendix A.2.

Theorem 2.1 (Stock price with Cash Dividends and Credit) All arbitrage-free
stock price processes for S can be written as

St = 1τ>t S∗t (5)

with “non-defaulting stock price”

S∗t := (F ∗t −Dt)Xt + Dt (6)

where

� The “pure stock price” X = (Xt)t is a non-negative (local) martingale
with X0 = 1.3

� F ∗t := Ft/SV(0, t) is the “risky forward” with E[F ∗t 1t<τ ] = Ft.

� The process D = (Dt)t represents the “growth-rate discounted” value of
all future dividends from t onwards. It is a floor below St.

Notation 1 (Summary of Notation) The “risk forward” is given as

F ∗t :=


S0 −

∑

j:0<τj≤t

α∗j


 Rt , (7)

3Strictly speaking, the “all” above is only true if we assume “no free lunch with vanishing
risk”, (cf. Delbaen/Schachermayer [6]) which is stronger than “no arbitrage”. For this text,
we will also always assume that X is a true martingale.
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This is the fair strike of a forward contract which settles only if the stock did
not default until maturity. The formula is written in terms of the “growth rate-
discounted dividends”,

α∗j :=
αj

Rτj

.

Each α∗j represent the time-zero value of all the cash dividends received per share
bought at time 0 if all subsequent proportional proceeds from holding the share
position are reinvested in the stock and if the stock did not default until the
ex-dividend date τj.

Their value is consequently computed by “growth rate-discounting” the future
cash dividend αj using the proportional riskless growth factor of the asset,

Rt := e
∫ t
0 (rs+hs−µs) ds

∏

j:τj≤t

(1− βj) . (8)

Following proposition 2.1, the value St of the share at some future time t cannot
drop below the “discounted” value of all forthcoming future dividends, i.e. the
stock price cannot fallow below the floor D = (Dt)t given as

Dt := Rt

∑

j:τj>t

α∗j

(cf. (3) on page 5).
Also note that (5) readily implies that

Ft = F ∗t SV(0, t) .

Interpreation: The essence of the preceding result is that we can separate
modelling the volatility risk X of the stock entirely from the other characteristics
of the equity. In fact,

S∗t = (F ∗t −Dt)Xt + Dt

really means that the only thing left to do is to specify the “pure” stock pro-
cess X (hence the name). In this context, note that the process X itself should
not carry any default risk (i.e., reach zero) because it would not actually imply
default on the outstanding dividends: if Xt = 0, then the martingale property
of X forces it to stay in 0, such that the stock S reduces to a pure risky cash
bond paying the dividends as coupons.

Proposition 2.2 (Alternative Formulation) An alternative representation for
equation (6) in theorem 2.1 is the following: denote by

S∗0 := S0 −
∞∑

j=1

α∗j (9)

the “effective” stock price level which indicates the part of the initial stock
price S0 which is actually subject to volatility risk. Then, we obtain from (6)
the formula

S∗t := S∗0RtXt + Dt , (10)

which also implies F ∗t = S∗0Rt + Dt.
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Remark 2.1 (Business time) To ease the implementation of business time such
that the stock has zero volatility during non-trading hours, it is convenient to
rescale time for X, i.e. write it in terms of a suitable martingale Z as

Xt := ZAt

where (At)t is the business time process for the stock price. In particular, A does
not increase outside trading hours. Moreover, it can also be used to model “event
dates” where time is faster in the sense that the daily volatility is a multiple of
a standard day (earnings announcements, index rebalancing, etc).

2.2 SDE for the Stock Price

In order to derive a simple form for the stochastic differential equation governing
the dynamics of S, we start with the formulation of proposition 2.2: applying
Ito’s formula with jumps (cf. appendix B.1) to equation (10) yields4 the following
SDE for S∗:

dS∗t = S∗t−(rt + ht − µt) dt (11)

+
(
S∗t− −Dt−

) dXt

Xt−

−
∑

j

{
S∗t−βj + αj

}
δτj (dt) .

This equation separates the dynamics of the non-defaulting stock price S∗ into
its three main components: the first line represents the continuous growth of
the stock, the second line its “randomness” (note that the randomness only
applies to the excess of the stock level over the future dividends), and the last
line represents the impact of dividend payments.

Accordingly, the SDE for S is then5

dSt = St−(rt + ht − µt) dt

+(St− − 1τ≥t Dt−)
dXt

Xt−

−
∑

j
{St−βj + 1τ≥t αj} δτj (dt)

−S∗t−δτ (dt).

4The continuous differentials of R and D, respectively, are given as dRc
t = Rt−(rt + ht −

µt) dt and dDc
t = Dt−(rt + ht − µt) dt. Applying Ito to (10) hence gives

dS∗t = S∗0Xt−dRc
t + S∗0Rt−Xt−

dXt

Xt−
+ dDc

t +
∑

j

{
S∗t − S∗t−

}
δτj (dt)

= S∗t−(rt + ht − µt) dt +
(
S∗t− −Dt−

) dXt

Xt−
+

∑
j

{
S∗t−(1− βj)− αj − S∗t−

}
δτj (dt) ,

which yields the assertion after rearrangement (we implicitly assumed that X > 0 and that
the jumps of X do a.s. not coincide with the dividend dates).

5From (5) we get dSt = 1τ>t− dS∗t − S∗t−δτ (dt).

8



Given our setup, the stock price is zero if and only if it defaulted, i.e. we can
write the indicator 1τ≥t equally as 1St−>0 . This gives the following equation
in terms of St− only and without reference to τ as

dSt = St−(rt + ht − µt) dt (12)

+
(
St− − 1St−>0 Dt−

) dXt

Xt−

−
∑

j

{
St−βj + 1St−>0 αj

}
δτj

(dt)

−St−δτ (dt).

Proposition 2.3 (Ito for continuous and positive X) For the special case of a
strictly positive, continuous pure diffusion

dXt

Xt
= σt− dWt

and a sufficiently smooth function H we can apply Ito (cf. appendix B.1) and
get: 6

dHt(St) =
{

Ht(0)−Ht(St−)
}

δτ (dt) (13)

+∂sHt(St−)
{

St−(rt + ht − µt) dt +
(
St− − 1St−>0 Dt−

)
σt− dWt

}

+
1
2
∂2

ssHt(St−)
(
St− − 1St−>0 Dt−

)2
σ2

t−dt

+
∑

j

{
Ht

(
St−(1− βj)− αj1St−>0

)−Ht(St−)
}

δτj (dt)

+∂tHt(St−) dt

=
{

Ht(0)−Ht(St−) + St−∂sHt(St−)
}

δτ (dt) (14)

+∂sHt(St−)dSt

+
1
2
∂2

ssHt(St−)
(
St− − 1St−>0 Dt−

)2
σ2

t−dt

+
∑

j

{
Ht

(
St−(1− βj)− αj1St−>0

)−Ht(St−)

+∂sHt(St−) (St−βj + αj)
}

δτj (dt)

+∂tHt(St−) dt

Note that for t > τ , these equations reduce to dHt(0) = ∂tHt(0) dt.

2.3 The Total Return Process

The “total return” S(TR) of a stock S (most commonly an index) is generated by
re-investing all dividends – but not any proceeds from repurchase agreements –

6We used the fact that the stock price is strictly positive at some time t if and only if
default did not yet occur, i.e 1τ≥t = 1St−>0 .
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back into the asset. That simply means that the value of the total return index
will not drop at a dividend date. Therefore, the total return must have a form

S
(TR)
t = S0e

∫ t
0(rs+hs−µs) dsYt

{
τ > t

}
(15)

where Y is a martingale. If Y is continuous, then the total return is essentially
the “continuous part” of the stock price. Mathematically, this can be written
as

S
(TR)
t =

∫ t

0

dSu−
{
τ > t

}
.

More generally, if t is between the dividend dates τk and τk+1, we have

S
(TR)
t =

St

Sτk

k∏

j=1

Sτk−
Sτk−1

{
τ > t

}
.

We have therefore identified the martingale Y in equation (15) as

Yt =
St

Sτk
R(τk, t)

whenever τk ≤ t < τk+1. In particular, Y is not equal to X.
Also note that S(TR) is not Markov with respect to itself: we need to simu-

late S in order to be able to compute a payoff depending on the total return.

Remark 2.2 Note that in the presence of cash dividends, the total return pro-
cess is bounded from below away from zero. So it cannot be modeled using a
Black&Scholes process or a similar standard process, either.

3 European Options and Implied Volatility

Now that we have identified with equation (6) a formulation of the share price
process which is consistent without our dividend assumptions, the question is
which impact this has on the pricing and hedging of derivatives.

In this first section we will discuss the pricing of European options and var-
ious standard concepts such as implied and local volatility in the presence of
credit risk and cash dividends. Section 4 is devoted mainly to PDEs and sec-
tion 5 covers the pricing and risk management of variance swaps in the presence
of credit risk and dividends.

Pure Options

We start with the observation that a European option on S is essentially a
European option on X, since we can split each payoff H into its normal value
and the payoff in the event of a default prior or at maturity:

H(ST ) = 1τ>T H
(

(F ∗T −DT )XT + DT )
)

+ 1τ≤T H(0)
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Now assume that we can observe market prices for call options on S for all
strikes K ≥ 0 and maturities T ≥ 0, denoted by

C(T,K) := P (0, T )E
[ (

ST −K
)+

]
.

We then define a call on the pure stock price X with “relative strike” x as

C(T, x) := E
[
(XT − x)+

]
.

Result 3.1 The price of a call on the pure stock price X can be expressed in
terms a call on S as

C(T, x) =
1

PS(0, T )(F ∗T −DT )
C

(
T, (F ∗T −DT )x + DT

)
. (16)

Reversely,

C(T, K) = PS(0, T )(F ∗T −DT )C
(

T,
K −DT

F ∗T −DT

)
. (17)

3.1 Dupire’s Local Volatility with Cash Dividends and
Credit Risk

In other words, we can obtain information on the pure stock price X by observ-
ing option prices on S: in particular, it means that the knowledge of all option
prices for S for each maturity T gives us access to the marginal densities of the
underlying pure martingale X via

P[XT = x] = ∂2
xxC(T, x) .

Accordingly, Dupire’s implied local volatility [8] for the process X is given as

ςX
t (x)2 :=

∂tC(T, x)
2 x2∂2

xxC(T, x)
, (18)

i.e. if the a unique solution to the SDE

dXt

Xt
= ςX

t (Xt) dWt

exists, then it is a martingale and it reprices all European options in the sense
that E[(Xt − x)+] = C(t, x) for all (t, x). The corresponding full stock price S
will reprice the original option prices.

Using a local volatility for X rather than for S is much less prone to nu-
merical instabilities due to dividend or credit effects, since all these effects have
essentially been stripped out. For example, a local volatility function for S di-
rectly would by definition not be properly defined below the (time-dependent)
lower bound D which would lead to numerical noise around this region. It is also
often observed that the standard local volatility for S has severe numerical prob-
lems around dividend dates. Moreover, our “pure” formulation in conjunction
with remark 2.1 allows the calibration of business-time local volatility.
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Remark 3.1 Assume that as above dXt/Xt = ςt(Xt)dWt. Then, we can rewrite
the SDE (12) for the stock price as

dSt = St−(rt + ht − µt) dt + St−σt(St−) dWt (19)

−
∑

j

{
St−βj + 1St−>0 αj

}
δτj

(dt)

− St−δτ (dt).

with local volatility function

σt(s) :=

{
s−Dt−

s ςt

(
s−Dt−

F∗t−−Dt−

)
(s > Dt−)

0 (s ≤ Dt−)
. (20)

(Note that as before the left limits on D and F ∗ indicate that these quantities
shall not contain the dividends paid at t.)

3.2 Implications for Static No-Arbitrage Conditions

This is all well, but further investigation of equation (16) highlights a potential
issue: we know that the imposition of cash dividends demands that the stock
price ST cannot fall below the floor DT unless it defaults. Hence, there is a limit
on the value of the call on the stock with a strike K of less than DT : such a call
must be equal to the discounted forward value, C(T, K) = P (0, T )(FT −K) =
PS(0, T )(F ∗T −K). This is a hard constraint on the value of calls with strikes
below K which is not present when we use purely proportional dividends as in
Black&Scholes.

In fact, it should come to no surprise that the introduction of cash dividends
and credit risk changes the usual “no-arbitrage”-conditions. Consider, as an-
other example, a call calendar spread over a dividend date: a call just after a
dividend date is worth less than a call which is struck with the same strike just
before the dividend. That means that the call prices are not always increasing
in time.

The common no-arbitrage conditions such as positivity of butterflies and
calendar spreads plus some constraints on the boundaries of course still hold,
but not for S itself, but for the pure stock price X. They are summarized here:

Result 3.2 Assume pure calls C(T, x) are given for all maturities T ≥ 0 and
all strikes x ≥ 0. Then, X is a strictly positive true martingale if and only if

1. The forward is preserved, C(T, 0) = 1. This implies that C(T, 0) = FT .

2. Butterflies have a positive value, ∂2
xxC(T, x) ≥ 0.

3. Calendar spreads are positive, ∂TC(T, x) ≥ 0.

4. The probability of reaching zero is nil, i.e. ∂xC(T, 0) = −1.7

7One could weaken this condition to ∂xC(T, 0) ≥ −1, in which case X can reach zero (for
example, in CEV or SABR). However, as discussed above, we consider a stock price model in
which the stock can degenerate into a coupon-bearing risky bond as not desirable.
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5. For high strikes we have limx→∞ C(T, x) = 0.

In this case we say that the market is “strictly free of arbitrage”.8

The above summary is not only useful in the context of cash dividends; it also
tells us that the slope of the call prices as a function of strike must change in
the presence of credit risk. In particular, assume that there are no dividends
but that there is a substantial credit risk, i.e. SV(0, T ) ¿ 1. In this case, the
original European option strip for S has the property

∂KC(T, 0)
P (0, T )

= −SV(0, T ) À −1 ,

hence the (undiscounted) call prices as a function of K must have a much higher
slope than -1. Such a distribution cannot be generated by a diffusion. This
means in particular that the standard measure of volatility risk, Black&Scholes’
implied volatility, will explode as K ↓ 0.9 To recall, the (standard) implied
volatility of S for strike K and maturity T is the positive number σBS(T, K)
which solves

BS
(

σBS(T,K), T,
K

FT

)
≡ C(T,K)

P (0, T )FT
. (21)

where

BS(σ, T, k) := N (d+)− kN (d−) with d± =
− ln k ± 1

2σ2T

σ
√

T
.

Figure 1 shows the impact on Black&Scholes implied volatility if an otherwise
flat 40% volatility is superimposed with either a 300 or a 1 bps credit spread.
The former raises the 1m 90% implied volatility to 45%, and the ATM volatility
with the same maturity to 43%, a full three volatility points higher than the
base volatility of 40%. This shows that the effects of credit risk are not confined
to far OTM puts, but can be seen already in prices for ATM options.

Moreover, the second graphs shows that the presence of even a minimal
credit risk imposes very extreme lower bounds on implied volatility.

One might be tempted to argue that this observation does not really matter
since options on the very short end are liquid, hence whether the implied volatil-
ity is purely the market’s risk-adjusted volatility estimate or includes some credit
risk should not matter. However, this argument ignores the effects the different
effects have on hedging the position: if an option position on an underlying with
credit risk is delta-hedged, the relevant volatility which determines the accuracy
of this hedge will be the realized volatility of the pure stock price X (of 40%
in the example above), for which the “mixed” standard implied volatility is not
a valid indicator. The credit risk component of the option has to be hedged
separately with CDS’.

8The case where only a discrete set of option prices is observed is equally straight-forward,
cf. Buehler [5].

9See also Lee [10] where it is shown that the asymptotic growth rate of implied volatility
is of at most of degree 2 in log-strike.
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Figure 1: Black&Scholes implied volatilities for a hypothetical stock price with a CDS
spread of 300bps (left) or only 1bps (right), superimposed on a flat pure stock price
volatility of 40%. The credit spread of 300bps implies an annualized default probability
of 4.9%, while the 1bps spread implies a risk of default per year of only 0.02%. It is
remarkable that even such a very low probability of default has such a severe impact
on short term implied volatilities.

3.3 Implied Volatility with Cash Dividends and Credit
Risk

All in all, standard implied volatility in its simple form may not be the best
way of seing the pure “volatility risk” in the stock price. Indeed, once we have
accepted thinking of X as the volatile part of the stock price, it is much more
natural to look at the implied volatilities of X directly. Thanks to equation (16)
this is straightforward:

Definition 3.1 We call σX(T, x) the “pure” implied volatility of S (or X) if it
solves

BS (σX(T, x), T, x) ≡ C(T, x) .

Note that this means that

C(T,K) = PS(0, T ) (F ∗T −DT ) BS
(

σX

(
T,

K −BT

F ∗T −DT

)
, T,

K −BT

F ∗T −DT

)
. (22)

If our new measure of implied volatility is used, then it is possible to mark the
implied volatility of X rather freely – for example, by using an implied volatility
interpolation such as Gatheral’s [9] or by specifying some martingale-dynamics
such as Heston’s for X – without violating the inherent arbitrage bounds on
the standard implied volatility surface of S which are implied by the presence of
credit risk and dividends. In particular, such a surface prevents trivial arbitrage
between equity and credit instruments.

As an example, figure 2 compares the implied volatility surface of .FTSE100
with cash dividends for three years vs. purely proportional dividends.
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Figure 2: Original .FTSE100 implied volatility with proportional dividends (left)
vs. the same data with cash dividends for three years (right). The forwards are identical
in both cases. The right hand graph is produced by superimposing the cash dividends
on the left hand volatility and then to to shift it in level to match the ATM curve.

Effects of Using Pure Volatility

The consequence of imposing cash dividends if the quoted option prices in the
market are fixed is a higher pure implied volatility compared to the pure propor-
tional case, in particular for lower strikes. This can be explained by considering
an option with a strike K just above the floor DT . While such an option will
have a small but non-zero optionality value10 for the purely proportional case
for most volatilities, it will have virtually no optionality in the presence of cash
dividends unless the pure volatility of X is very very high. Figure 3 shows the
relation between “cash volatility” and “proportional volatility” in more detail.

The reverse conclusion is that if we mark the implied volatility of an under-
lying using its pure volatility, then the resulting standard implied volatility will
actually be lower for low strikes, and it will become zero below the floor DT .

While the introduction of cash dividends lowers the standard implied volatil-
ity if the same pure volatility is used, the opposite effect occurs, though, if we
start to look at single stocks which also carry credit risk. In this case, the rela-
tionship between standard and pure implied volatility is reversed: even a small
probability of default puts a non-zero probability point-mass at the default state
zero, which lets standard implied volatilities explode.

4 PDE Pricing

In the previous section, we have discussed the implications of cash dividends
and credit risk on the pricing of European options and consequences for local
and implied volatility. In this section, we will expand the discussion to pricing

10excess of option value above intrinsic

15



20
%



30
%



40
%



50
%



60
%



70
%



80
%



90
%



10
0%



11
0%



12
0%



13
0%



14
0%



15
0%



16
0%



17
0%



18
0%



1m

6m

1y3m

2y6m

4y

20

30

40

50

60

Standard Black&Scholes implied volatility given a cash dividend volatility of 40%

20
%



30
%



40
%



50
%



60
%



70
%



80
%



90
%



10
0%



11
0%



12
0%



13
0%



14
0%



15
0%



16
0%



17
0%



18
0%



1m

6m

1y3m

2y6m

4y

20

30

40

50

60

Cash Dividend Volatility given a standard Black&Scholes implied volatility of 40%

Figure 3: Left: standard Black&Scholes implied volatility surface if the stock price is
modelled with cash dividends and a flat 40% volatility for X. The lower volatility on
the short end is a reflection of the decreases variability of the stock price there. Right:
the opposite transformation – the graph shows the implied volatility for X with cash
dividends if the market is given as a flat 40% Black&Scholes volatility for all strikes
and maturities. Accordingly, the effective volatility short end increases substantially.

with PDEs in our framework. We also briefly comment on Monte Carlo in
section 4.4.

Setting

For simplicity of exposure, we assume that X is a local-volatility process, i.e.

dXt

Xt
= ςt(Xt) dWt (23)

as suggested in (18) above where ς is sufficiently well-behaved such that X > 0.
We use the formulation suggested in remark 3.1 and define σ accordingly.

The following discussion can be extended easily to the case of higher-dimensional
dynamics for the stock price.

4.1 The PDE of for the Full Stock Price Process

Let H(ST ) be a payoff at maturity and let us assume first that there is no
immediate recovery values for the option, i.e. the holder simply recevies H(0)
at maturity if the stock defaulted. Also note that the stock price S is zero if
and only if it has defaulted, i.e. the stock price in the current setting is Markov.
Set

Ht(s) := P (t, T )E
[
H(ST )

∣∣ St = s
]

(24)

be the value of the claim at any time t. Using (13) we get

dHt(St) =
{

Ht(0)−Ht(St−)
}

δτ (dt)
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+∂sHt(St−)
{

St−(rt + ht − µt) dt + St−σt(St−) dWt

}

+
1
2
∂2

ssHt(St−) S2
t−σt(St−)2dt

+
∑

j

{
Ht

(
St−(1− βj)− αj1St−>0

)−Ht(St−)
}

δτj
(dt)

+∂tHt(St−) dt

By construction, this must be a discounted martingale,11 hence we can derive
the associated PDE from the above SDE as

0 = ∂tHt(s) dt−Ht(s) rt + ∂sHt(s) s (rt + ht − µt) +
1
2
∂2

ssHt(s) s2σt(s)2

+1s>0

∑
j

{
Ht

(
s(1− βj)− αj

)−Ht(s)
}

δτj
(dt)

+
(
Ht(0)−Ht(s)

)
ht1s>0 .

This equation offers itself to straight forward interpretation of the dynamics of
the stock price: the first line is simply the standard PDE for a local volatility-
driven stock price with a modified drift which reflects the additional average
growth rate which is to compensate the stock holder for the additional risk of
default. The second line is the jump condition for the dividend payments.

The last line, finally, represents the infinitesimal probability of defaulting,
in which case the value drops to Ht(0). Note that the multiplication with the
indicator 1s>0 is redundant in the case here, because the left hand bracket then
equals zero anyway. However, the indicator becomes necessary if we extend the
above formula to take into account “immediate recovery” values: this simply
means that instead of falling to Ht(0), the value of the security becomes, say, ρt.
This quantity could technically also depend on the previous stock price level.

A good example of a security whose pricing requires such an additional
recovery term ρ is a convertible bond which will default to the recovery value
of its intrinsic bond, which is usually assumed to be around 40% of notional.

Result 4.1 The PDE for an option with terminal payoff H and recovery pro-
cess ρ is

0 = ∂tHt(s) dt−Ht(s) rt + ∂sHt(s) s (rt + ht − µt) +
1
2
∂2

ssHt(s) s2σt(s)2

+1s>0

∑
j

{
Ht

(
s(1− βj)− αj

)−Ht(s)
}

δτj (dt)

+
(
ρt −Ht(s)

)
ht 1s>0 . (25)

It should be noted that this equation also holds for the dynamics of the price
process of the security after default: once default occurred, s ≡ 0, i.e. the value
process of the option is trivial and has to accrue at the risk-free rate.

11To this end, note that Nt := 1τ>t +
∫ t∧τ
0hs ds is a martingale: assume P is a Poisson-

process with intensity h. Then, its compensated version N ′
t := Pt −

∫ t
0hs ds is a martingale.

Now denote by τ ′ its first jump time, i.e. τ ′ := inf{t : N ′
t = 1} and define N ′′ as the stopped

process N ′. Then, N ′′ and 1−N have the same distribution.
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4.2 American Options

American options are priced as usual: assume that upon exercise at time t, the
option holder receives Et(St−). the Accordingly, the respective partial differen-
tial inequality is given by

Et(s) ≥ ∂tHt(s) dt−Ht(s) rt + ∂sHt(s) s (rt + ht − µt) +
1
2
∂2

ssHt(s) s2σt(s)2

+1s>0

∑
j

{
Ht

(
s(1− βj)− αj

)−Ht(s)
}

δτj
(dt)

+
(
ρt −Ht(s)

)
ht 1s>0 .

4.3 Pure Stock Price PDE

The previous PDE (25) is the natural description of the asset dynamics, but
when implemented numerically, it has two major drawbacks: first is the need to
implement a jump condition on the finite difference grid at every dividend date
which will slow down convergence – in particular, when used with indices which
may pay dividends nearly every day such as S&P500. Secondly, (25) requires at
least in its pure application the evaluation of unnatural “instantaneous” quanti-
ties such as rt and ht. Unless we actually require the value of the option at any
time between now and maturity (continuous exercise conditions or continuous
Barriers), it is therefore often more efficient to express the price of an option
on S as a price of an option on X.

To this end, consider a Bermudan option that can be exercised on dates 0 =
T0 < · · · < TN with exercise values E0(s), . . . , EN (s) depending on the stock
price s at that time. We assume that the exercise decision is communicated
after any dividends are paid on the stock. In the event of default, the holder of
the option recovers ρt.

At maturity, assuming no default, the value of the option is obviously

HTN (s) = max {EN (s), 0} .

At any exercise date T` before maturity and default, standard pricing theory
tells us that the value of the option will be the maximum between exercising
the option now or holding on to it. If we hold on to the option, the stock may
default before the next exercise decision. Hence, the holding value must be the
sum of the discounted value of the next exercise date, multiplied by the survival
probability, plus the value of the recovery in the event of default, weighted by
the default probability. We write this as

HT`
(s) := max

{
E`(s), C`(s) + G`

}
,

where
C`(s) := PS(T`, T`+1)E

[
HT`+1(ST`+1)

∣∣ ST`
= s

]
(26)
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denotes the value of holding the option if it does not default until the next
exercise time, and where

G` := E
[
P (T`, τ)ρτ1T`<τ≤T`+1

∣∣ τ > T`

]
=

∫ T`+1

T`

htρtP
S(T`, t) dt

denotes the recovery value if it does. Note that G` is deterministic in our current
framework. To compute (26), define for t ∈ [T`, T`+1]

C̃t(x) := E
[
HT`+1

(
(F ∗T`+1

−DT`+1)XT`+1 + DT`+1

) ∣∣ Xt = x
]

(27)

such that

C`(s) = PS(T`, T`+1) C̃T`

(
s−DT`

F ∗T`
−DT`

)
.

Under the local volatility assumption (23) for X, the PDE for (27) is as usual
given by

0 = ∂tC̃t(x) dt +
1
2
∂2

xxC̃t(x)x2ςt(x)2 ,

which is much easier to implement efficiently, in particular if ς is given analyti-
cally via Dupire’s formula (18).

4.4 Monte-Carlo

From an implementation point of view, Monte-Carlo methods are often more
intuitive even if they suffer from less efficiency for low dimensions. However, for
dimensions above two or for strongly path-dependent products, there is virtually
no alternative so far for the evaluation of exotic options.

In our framework, the implementation of an efficient Monte-Carlo scheme
can be achieved by separating the simulation of X which depends on the choice
of the stochastic dynamics and the subsequent application of dividend and credit
effects. In conjunction with remark 2.1 on business time, such an implementa-
tion can be transparent from a modeling point of view: the handling of X does
not require any additional information on S. For example, the transformations
described in result 3.1 can be used to provide a “pure” implied volatility surface
for the calibration of the stochastic process X.

5 Variance Swaps

While the previous concepts are straight-forward for simple European options
– after all, we simply apply an affine transformation to the stock price –, the
relationship between S and X of course also impacts the pricing and risk man-
agement of variance swaps.

This is the topic of the current section. We will start by introducing the
concepts of variance swaps, discuss the impact of cash dividends and then ad-
ditionally how to take into account default risk.
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Definitions

The basic idea of a variance swap is to pay the annualized realized variance,
i.e. the squared volatility of the returns of the underlying asset in exchange for
a previously agreed fixed “set volatility”, also squared. The definition of realized
variance over close-of business days 0 = t0 < · · · < tn = T is typically simply
the standard mathematical definition,

RVI(T ) :=
n∑

i=1

(
log

Sti

Sti−1

)2

.

However, to avoid that dividends impact the computation of realized variancre,
single-stock variance swaps are usually based on a dividend-adjusted version,

RVS(T ) :=
n∑

i=1

(
log

S
(TR)
ti

S
(TR)
ti−1

)2

,

which is just a clever way of saying that the returns of S as adjusted for the
dividends.12

With either definition of realized variance, the payoff of a variance swap is

252
n

RV(T )−K2

where K represents the fixed leg’s “set volatility”. The factor 252/n annualizes
the variance assuming that the year has 252 business days. The number 252 is
usually contractually fixed.

Remark 5.1 The payoff of single-stock variance swaps is usually also subject
to an additional cap at 150% of K2 since very extreme stock price movements,
for example due to takeover rumors or default, would otherwise have a very
strong effect on the realized variance estimator. This turns the contract into a
non-linear payoff on realized variance.

For the time being, we will ignore the cap; cf. Buehler [3] on how to model
the cap value.

For pricing purposes, it should be clear that the fixed leg of a variance swap
is a trivial zero bond. Moreover, the scaling factor 252/n in front of realized
variance simply changes the notional. Hence, when talking about “variance
swaps”, we will for most part assume that K is zero (a so-called “zero-strike
variance swap”) and that the scaling factor is 1. In other words, a variance swap
henceforth simply pays realized variance to the holder unless otherwise stated.

12Assuming that dividend effects occur end-of day, RVS(T ) =
∑n

i=1

(
log Sti−/Sti−1

)2
.
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5.1 Classic Variance Swap Pricing

The classic approach to price a (not annualized zero-strike) variance swap is to
assume that X has no jumps, that S pays no cash dividends, that the repo-rate
is zero and that there is no risk of default. Then, Ito’s formula applied to the
logarithm of the stock for each interval [ti−1, ti) yields

log
Sti

Sti−1

=
∫ ti

ti−1

dSt

St
− 1

2

∫ ti

ti−1

d〈S〉t
S2

t

(28)

≈ 1
Sti−1

(
Sti

− Sti−1

)− 1
2

1
S2

ti−1

(
Sti

− Sti−1

)2
.

Summing these terms up and rearranging them gives Neuberger’s [11] famous
formula

RVI(T ) ≈ −2 log
ST

S0
+ 2

n∑

i=1

1
Sti−1

(
Sti − Sti−1

)
. (29)

This formula suggests the following approach: to replicate the left hand side,
short two European log-contracts (we comment on this below) and execute a
daily delta-hedge which results in the last term in (29), following the remarks
in Bermudez et al. [1]. This means running a delta of

∆hedge
i := 2

P (ti, T )
Sti−1

, (30)

which amounts to a “cash delta” of 2, properly discounted (“cash delta” denotes
the amount of capital invested in the stock, i.e. it is the standard delta times
the stock price). Note, however, that this strategy is not self-financing if rates
are not zero. Its costs are covered by the discounted value of the last term in
equation (29).13

5.1.1 Intra-day Pricing and Risk Management

A theoretically slightly more accurate approach than using (29) is to use a
continuous form of that expression. The basic idea is that RVI is an unbiased
estimator for the quadratic variation of the log-returns of the stock, QV(t) :=
〈log S〉t even if S has jumps. This means that

E
[
RVI(T )

∣∣Fti

]
= E

[
QV(ti, T )

∣∣Fti

]
+ RVI(ti) (31)

for all i = 0, . . . , N , where we used QV(T1, T2) := QV(T2)−QV(T1).

13At the beginning of each period, we borrow a cash delta amount of 2P (ti, T ) and invest it
into the stock for a price of Sti−1 . At the end of the period, we sell the stock position for Sti ,
hence our P&L is 2P (ti, T )Sti/Sti−1 − 2P (ti, T )/P (ti−1, ti), which translates at maturity
into

2
(
Sti/Sti−1 − 1

)− 2 (1/P (ti−1, ti)− 1) = 2
(
Sti/Sti−1 − 1

)− 2
(
Fti/Fti−1 − 1

)
,

where the latter term matches exactly the expectation of the last term in (29).
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Now, we simply apply Ito to the log-contract and rearrange accordingly.
This gives:

QV(t, T ) = −2 log
ST

St
+ 2

∫ T

t

dSu

Su
, (32)

which for the case t = 0 essentially coincides under expectation with (29). Note
that in the absence of credit risk and cash dividends, (11) shows that

QV(t, T ) = −2 log
ST

F (t, T )
+ 2

∫ T

t

dXu

Xu
. (33)

To finally evaluate a variance swap at a point in time t ∈ [ti−1, ti], we split
the computation of the expected payout into three distinct parts:

E
[
RVI(T )

∣∣Ft

]

=
i−1∑

k=1

(
log

Stk

Stk−1

)2

+ E
[ (

log
Sti

Sti−1

)2 ∣∣Ft

]
+ E

[
n∑

k=i+1

(
log

Stk

Stk−1

)2 ∣∣Ft

]

= RVI(ti−1)︸ ︷︷ ︸
Past

+E
[(

log
Sti

Sti−1

)2 ∣∣Ft

]

︸ ︷︷ ︸
Present

+E
[
QV(ti, T )

∣∣Ft

]

︸ ︷︷ ︸
Future

(34)

While the “Past” is trivial to compute in theory (apart from practical problems
such as stock splits, non-trading days and other real-life phenomena), the ques-
tion remains how to compute “Present” and “Future”. Since the main idea of
splitting the payoff is to guarantee that the pricing scheme returns the correct
cash delta, it is in fact sufficient to compute the “Present” with a zero-volatility
Black&Scholes model, in which case the “Future” is in the light of (33) simply
given by

P (t, T )E
[
QV(ti, T )

∣∣Ft

]
= −2 P (t, T )E

[
log

ST

F (t, T )

∣∣Ft

]
.

This formula is also true if purely proportional dividends are present. It does
not hold in the presence of cash dividends or credit risk, on which we comment
below.

5.1.2 Realized Variance vs. Quadratic Variation

The approximation of realized variance by quadratic variation is valid only for
linear payoffs on variance. The price of any non-linear payoff such as a call
on realized variance must be computed based on realized variance. To see
this, assume that X is a Black&Scholes process and that S = X. Following
Christopher Jordinson’s argument presented on page 12ff. in [4] we then have

RV(0, T )
QV(0, T )

=
n∑

i=1

{
xi − 1

2σ
√

T/n√
n

}2

22



with (xi)i=1,...,n iid standard normal. Consequently, the ratio RV/QV is chi-
square distributed with parameter λ = σ2T/4n2.

Figure 4 illustrates the effect on option prices in a Heston model: on the
short end the value of an option written on quadratic variation declines while
it increases for options on realized variance.

Options on Quadratic Variation vs. Realized Variance in a Heston model
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Figure 4: Options on realized variance vs. options on quadratic variation in a Heston
model. The graph illustrates that short term options on realized variance cannot be
priced using quadratic variation.

5.1.3 The Delta of a Variance Swap in Black&Scholes is Zero

From (34), we can easily derive the delta of a variance swap as

∆VS
t = 2

P (t, T )
St

log
St

Sti−1

+ ∂StP (t, T )E
[

log
ST

F (t, T )

∣∣Ft

]

︸ ︷︷ ︸
(∗)

. (35)

Here, it is important to notice that the term log ST /F (t, T ) does not depend on
the current stock price level, St. That means any sensitivity of (∗) towards St

must be via a dependency of the volatility surface on the stock price level, as
it is the case for local volatility models. However, for all ‘classic stochastic
volatility models, jump models or, in fact, Black&Scholes, where the dynamics
of the underlying volatility structure do not functionally depend on St (or Xt

for that matter), the term (∗) will have no delta.
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Remark 5.2 The delta of a variance swap in Black&Scholes at any fixing date t =
ti is zero,

∆VS
ti

= 0 .

The same is true for all classic stochastic volatility and jump models.

The famous delta-term (30) which we quoted above is the result of offsetting a
variance swap position with the respective log-contract: assume that we add a
log-contract initiated at time t = 0 to the payoff (34). This contract is

E
[

log
ST

F (0, T )

∣∣Ft

]
= E

[
log

ST

F (t, T )

∣∣Ft

]
+ log

St

S0
− log P (0, t)

where we used the fact that F (t, T )/F (0, T ) = St/S0/P (0, t) in our current
setting. If we add the delta of this term to (35) we end up at any fixing date ti
with exactly the previously mentioned

∆hedge
i = 2

P (ti, T )
Sti

.

From a booking perspective, this implies that the variance swap and its log-
contract hedge (or any approximation to it) should be booked into the same
account in order to make sure that the system reports the right combined stock
sensitivity. Note that such a procedure also allows to book much reduced “log
contracts” against the variance swap, such as simple butterflies, while the price
of the variance swap is still computed using the full log-contract.

Remark 5.3 If the log-contract (∗) is computed using the approximation ap-
proach discussed below, then a typical risk-management system will produce a
delta for this term based on the rules governing the change of implied volatility
if the stock price changes. In this sense, the delta of a variance swap in such a
system is a pure “dVol/dSpot” measure.

Log-contracts

The above discussion and in particular the replication formula (29) assumes
that we can actually trade log-contracts. In practise, this is not the case. If we
were able to trade arbitrary amounts of European options with all strikes, we
could replicate any European payoff by virtue of the following formula:

f(x)−f(x0) = f ′(x0)(x−x0)+
∫ ∞

x0

f ′′(z)(x− z)+ dz +
∫ x0

0

f ′′(z)(z−x)+ dy dz .

(36)
For the log-contract, we obtain:

log
ST

FT
=

ST − FT

FT
+

∫ ∞

FT

(ST −K)+

K2
dK +

∫ FT

0

(K − ST )+

K2
dK .
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It is clearly not convenient to trade in an infinite number of contracts, hence
the above expression needs to be approximated by using finitely many European
options. Assume we are able to trade in options with strikes 0 < K−np

< · · · <
K0 < · · · < Knc where K0 = FT is ATM. Since log x is concave, we can construct
a following sub-hedge on the interval [K−np

,Knc
]:

log ST ≥ log FT +
nc∑

k=1

wc
k (ST −Kk−1)

+ +
np∑

k=1

wp
k

(
K−(k−1) − ST

)+
,

with appropriate weights wc and wp, cf. appendix B.2. A super-hedge can be
constructed in a similar way.

A common point of concern is the fact that this super-hedge needs to be cut
off at some point. The above formula is very sensitive to price of OTM options,
which in turn are usually very illiquid. Hence, the price of a variance swap can
not usually be read from the price of traded options, even under the idealizing
assumptions of deterministic rates, no credit risk and no cash dividends.

In practise, of course, there are many more effects which are not taken
into account by such a simplifying framework, chiefly among them riskiness of
interest rates.

5.1.4 Interpretation: Playing Implied vs. Realized Volatility

Consider the following idea: let us assume that we want to hedge an European
option with payoff H ≥ 0 using the Black&Scholes model: we fix some “set
volatility” K and compute, at any time t, the price of the option as ΠBS

t (St)
using the volatility K. We then short the option and delta-hedge according
to Black&Scholes’s delta ∆BS

t (S) := ∂SΠBS
t (S), again computed with our “set

volatility” K.
Assuming the real stock price is a diffusion

dSt

St
= (rt − µt) dt + σt dWt

with true (stochastic) volatility σ, Ito shows that

dΠBS
t (St) = ∆ΠBS

t dSt +
1
2
ΓBS

t σ2
t S2

t dt + θBS
t dt

where we used Gamma ΓBS
t (S) := ∂2

SSΠBS
t (S) and Theta θBS

t (S) := ∂tΠBS
t (S).

Since Π satisfies the Black&Scholes-PDE, we have that

θBS
t (S) = −1

2
ΓBS

t K2S2 ,

hence we get the standard result that our accumulative hedging error is

P&LBS(H) := −
(
H(ST )−Π0(S0)

)
+

∫ T

0

∆BS
t dSt

=
1
2

∫ T

0

ΓBS
t S2

t

(
σ2

t −K2
)

dt .
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That means that under the assumption that the real stock price is a diffusion, we
can bet on a discrepancy between implied squared volatility K2 and true squared
volatility σ2: if we assume, for example, that the quoted implied volatility of
some call is probably going to be below the true volatility of the asset, we could
buy that call and delta-hedge it with its initial implied volatility. Since the call’s
gamma is positive, P&LBS will be positive if the true volatility is indeed always
higher than the implied volatility.

This approach, however, has one drawback: Cash Gamma ΓBS,$
t := ΓBS

t S2
t of

a call is not a constant. Hence, the gain we make if we are right in our prediction
will depend a lot on when the true volatility is above the implied volatility. This
is particularly a concern if the spot moves away from the strike of the call in
which case gamma decays rapidly and the effect of our bet diminishes. It also
means that even if we are on average right that the true volatility is above the
implied volatility, we may well still make a loss with the above strategy.

To alleviate this drawback, we would therefore require an option whose Cash
Gamma is independent of the spot level, for example a constant. This payoff
now is exactly the log-contract, H(ST ) := −2 log ST , i.e.

P&LBS(2 log) =
∫ T

0

(
σ2

t −K2
)

dt .

Moreover, the delta of a log-contract in Black-Scholes is easily seen to be ex-
actly ∆BS

t = P (t, T )/St regardless of the implied volatility. This is in line with
our formula (32).14 In this sense, a variance swap can be seen as the delta-
hedged European option position which provides a constant exposure in cash to
the discrepancy between implied and true volatility.

Remark 5.4 (Delta of a Variance Swap in Black-Scholes) In Black-Scholes, a
variance swap which pays pure quadratic variation has no delta – its payoff
is a constant. However, the delta of a short position in such a variance swap,
plus a long position in its log-hedge and the appropriate funding in cash (see
below) will be 2P (T, t)/St.

However, even in Black-Scholes a standard variance swap paying realized
variance will have a residual daily delta which arises from the daily log-squared
returns which comprise its payoff, as can be seen in (34).

Remark 5.5 (Delta of a Variance Swap in Stochastic Volatility models) In other
volatility models, such as Dupire’s implied local volatility, a variance swap will
have some delta arising from the additional dependence of volatility on spot. In
stochastic volatility models such as Heston’s, a variance swap has only a very
small delta which arises from the fact that it pays the realized variance rather
than quadratic variation. If it were to pay just the latter, it wouldn’t have a delta
in the classical sense, but a “vega” towards a volatility which is highly correlated
with spot.

14More details on this construction can be found in Demeterfi et al. [7].
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5.2 Cash Dividends

The presence of cash dividends alters the argumentation above only slightly.
The main difference is that then (28) on page 21 does not hold since it omits
the jumps due to the dividends. Assuming that X itself has no jumps, we obtain

log
Sti

Sti−1

=
∫ ti

ti−1

dSt

St
− 1

2

∫ ti

ti−1

d〈S〉t
S2

t

+ log
Sti

Sti−
−

(
Sti

Sti−
− 1

)
−

(
Sti

Sti−
− 1

)2

,

which has also been discussed in [1] and Buehler [4]. Following (1) on page 3
we can write at each dividend date

Sτj− =
Sτj

+ αj

1− βj
. (37)

(we here use the assumption that dividends are paid right before the open). Let
us also introduce the function

Dj(s) := log
s (1− βj)

s + αj
+

s βj + αj

s + αj
−

(
s βj + αj

s + αj

)2

.

Then, we can summarize just as above that the payoff of a variance swap which
is not adjusted for dividends is given as

RVI(T ) = −2 log
ST

S0
+ 2

n∑

i=1

(
Sti

Sti−1

− 1
)

+ 2
∑

j:τj≤T

Dj(Sτj ) . (38)

The key in this expression is that the additional term on the right side is simply
a strip of European payoffs, which in turn can again be approximated by (36).
If dividends are taken out of the computation of the variance swap returns, the
formula changes accordingly to

RVS(T ) = −2 log
ST

S0
+ 2

n∑

i=1

(
Sti

Sti−1

− 1
)

+ 2
∑

j:τj≤T

DS
j (Sti) ,

where

DS
j (s) := log

s (1− βj)
s + αj

+
s βj + αj

s + αj
,

i.e. we omit the square term from D.

Remark 5.6 (Are variance swaps cheaper with cash dividends?)
A very common question will be to ask whether variance swaps become more or
less expensive if cash dividends are introduced.

It needs to be stressed that one can not simply price a variance with and
without cash dividends off the same implied volatility surface: in the light of our
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discussion above it should be clear that changing the dividend assumption also
changes the implied vol surface – or, in other words, if the implied vol surface
is marked with one dividend assumption, then we should not simply price a
variance swap with another assumption.

By experience15, however, prices of variance swaps fall if cash dividends
are introduced if the vol-surfaces are re-fitted consistently with observed option
prices.

5.3 Credit Risk

The proper incorporation of credit risk into variance swap pricing in our frame-
work is actually quite straight forward: by definition of the contract, realized
variance will become infinite, hence the contract’s payoff will simply be the
maximum capped amount, 150%K2, cf. remark 5.1 on page 20.

In other words, following a suggestion in Buehler [4], we can write the single
stock variance swap payoff as

1τ>T

(
252
n

RVS(T )−K2

)
+ 1τ<T 150%K2 ,

which can be achieved easily using the methods described above.
However, in practise one should keep in mind the typically very high cor-

relation between volatility and default intensities. Hence, if modelling variance
swaps in single stocks, it is advisable to incorporate stochastic default rates.
The above will also not work if variance spikes after the inception of the prod-
uct. In this case, the cap will have true optionality and needs to be evaluated
with elaborate methods, such as those discussed in [1] and in more detail in [3].

5.4 Related Products

The pricing of variance swaps can be extended to a series of products with very
similar characteristics, for example “Gamma swaps” and “Conditional Variance
Swaps” or “Corridor Variance Swaps”. The idea in all cases is the same, as the
payoff is now

1
n

n∑

i=1

{
252 f(Sti−1)

(
log

Sti

Sti−1

)2

− g(Sti−1)K
2

}
. (39)

For example, a variance swap has f(s) = 1 and g(s) = 1, while a gamma
swap has f(s) := s and g(s) = 1. A conditional variance swap with a lower
barrier of B has f(s) = 1s>B and g(s) = 1s>B /n, i.e. it is a variance swap
which only pays out realized variance vs. set variance for those days where the
stock price trades above the barrier. A corridor variance swap, finally, is given
by f(s) = 1s>B and g(s) = 1, i.e the fixed leg is always paid while the floating

15prior to 2008
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leg is only paid if the stock price trades above the barrier B. Cf. [1] for some
more information.

From a risk-management point of view, this product again separates into
two: the right hand side is a strip of European options, mostly digitals, for
which most desks have a well-developed pricing methodology.

The left hand part of the payoff can be evaluated as follows: first of all, let
us ignore the coefficient 252/n, i.e. we consider only

RVf (T ) :=
n∑

i=1

f(Sti−1)
(

log
Sti

Sti−1

)2

.

As before, assume absence of any credit risk and that X has no jumps. Also,
chose a function F such that

F ′′(s) =
f(s)
s2

.

We can then write

E [ RVf (T ) ] = E

[ ∫ T

0

f(St−)
S2

t−
d〈S〉t

]

= 2E [F (ST )− F (S0) ]− 2E

[ ∫ T

0

F ′(St−) dSt

]
− 2

∑

j:τj≤T

Df
j (Sτj )

with a “dividend adjustment” term due to (37),

Df
j (s) :=

{
F (s)− F

(
s + αj

1− βj

)}

−F ′
(

s + αj

1− βj

) (
sβj + αj

1− βj

)

−1
2

f

(
s + αj

1− βj

) (
s βj + αj

s + αj

)2

.

For the example of a corridor (or conditional) variance swap, we have f(s) :=
1s>B , ie. F ′′(s) := 1s>B /s2, which gives

F ′(s) =
(

1
B
− 1

s

)+

and F (s) =
1
B

(
s−B

)+

−
(
log

s

B

)
1s>B .

In fact, these terms are also very intuitive: they essentially postulate that no
delta-hedging or log-contract type European option position is required below
the barrier B. Above the barrier, the hedge and the European position are
essentially the (shifted) quantities of the variance swap hedge.

To evaluate E [F (ST )− F (S0) ], we can employ approximation via Euro-
peans as before. The delta-hedging term can be approximated as follows:

E

[ ∫ T

0

F ′(St−) dSt

]
≈ E

[
n∑

i=1

(
F (Sti−1)Sti−1

)(
Sti

Sti−1

− 1
) ]
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≈
n∑

i=1

E
[
F (Sti−1)Sti−1

] (
Fti

Fti−1

− 1
)

,

i.e. it is again a matter of evaluating a string of European options. In the case
of a corridor variance swap, we have to evaluate a sum of call options struck at
the barrier,

n∑

i=1

1
B
E

[ (
Sti−1 −B

)+
](

Fti

Fti−1

− 1
)

.

Finally, the sum of the dividend terms Df
j (Sτj ) is once again a simple strip of

European options.
The other payoff variants are equally straight forward.

Remark 5.7 Since all payoffs of the type (39) can essentially be priced with
European options, their price coincides with the price computed using an implied
local volatility framework.

6 Summary

We have discussed a simple and theoretically sound framework for handling
cash dividends and credit risk in equity modeling, and we have shown that the
proposed approach of writing the stock price process as

St =
{

(F ∗t −Dt)Xt + Dt

}
1t<τ

in terms of a “pure stock price” X is the only arbitrage-free way of doing so.
We have shown the impact of our approach on the pricing of European

options, on implied volatility, how to derive the appropriate PDE and we have
shown how to incorporate dividend effects in the pricing and risk-management
of variance swaps and related products.

While our framework makes no claim of sufficiency for today’s very com-
plex and highly developed markets, it is clearly a step forward towards a sound
integration of cash dividends into any risk management system. Its numeri-
cal closeness to the standard “drift-only” methods in equity pricing make it
particularly appealing.

A Proofs

A.1 Derivation of the Forward Price Formula

It has been mentioned in section 2.1 that the forward of stock price under the
setting there is given as (2) on page 5.

Let us fix the observation time t and the maturity of the forward T > t and
let ` such that τ`−1 ≤ t < τ`. If we purchase δ amounts of shares at time t
then we will receive according to our assumptions δStµt dt in every interval dt
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from the lending out the stock. Moreover, at any dividend date τj between t
and including T , we receive first a proportional dividend of βj and then a cash
dividend of αj . All of the above payments terminate if the stock defaults.

We handle the proportional receivables (borrow and proportional dividends)
first. We observe that we can actually ignore the default event because strictly
speaking we still “receive” the same proportional payments – it is just that the
stock price is zero. To remove the random nature of the payments, we always
re-invest them immediately into the stock, which means that by maturity, we
will own a total of δe

∫ T
t

µs ds/
∏

j:t<τj≤T (1 − βj) shares. Since we are supposed
to deliver exactly one share at maturity, we chose

δ := e−
∫ T

t
µs ds

∏

j:t<τj≤T

(1− βj) .

Next, we handle the future cash dividends. If at time τk with t < τk ≤ T the
stock has not yet default, we will own

δτk
:= e−

∫ τk
t µs ds

∏

j:`≤j<k

(1− βj) .

shares (note that it is important here that the proportional dividends are paid
first). For each of those shares, we will receive a cash dividend of αk, i.e. the
total amount earned from the cash part of the dividend is δτk

αk. However, since
these payments are subject to default risk, we can not simply account for those
future payments today at time t by discounting them back to t – instead, we
need to forward cell CDS to guarantee the credit risk (in other words, we sell
defaultable bonds with a notional equal to the dividends we expect to receive).
In formulas, that means discounting the dividends with both the standard rates
and the hazard rate.

In total, the value of all forthcoming dividends up to T , seen at time t is
∑

j:t<τj≤T

δτj αje
− ∫ T

t
(rs+hs) ds

Hence, our total initial investment will be

δ −
∑

j:t<τj≤T

δτj αje
− ∫ T

t
(rs+hs) ds ,

the accrued value of which constitutes our fair strike at maturity T . This is
formula (2).

Note that we do not accrue this value with the credit spread (only with the
standard interest rates) because we will deliver the share to our counterparty
even in the event of a default of the underlying company S prior to maturity
- mathematically, the only risk we need to cover is the missing receipt of the
cash dividends. An important consequence of this is that the fair forward for a
given stock under credit risk is equal to the well-known Black&Scholes case as
long as we consider all future dividends as proportional.

We will re-invest these proceeds at St into buying additional stock, which
means that our holding at time T is δe

∫ T
t

µu du shares.
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A.2 Proof of Theorem 2.1

We aim to show theorem 2.1 on page 6 using the notations on page 6. We start
with the following lemma:

Lemma A.1 Assume “no free lunch without vanishing risk” (NFLVR) as de-
fined by Delbaen/Schachermayer [6]. Suppose that rates, repo, credit risk and
proportional dividends are zero. In this case, the stock price price has the form

St = (Ft −Dt)Xt + Dt (40)

where
Dt =

∑

j:τj>t

αj

and
Ft = S0 −

∑

j:τj≤t

αj .

Proof of the lemma– We first recall that the stock price will drop at each
dividend date τj by the cash dividend amount αj . Between dividend dates, the
process S is a non-negative local martingale due to NFLVR according to [6].
For each t such that τ` ≤ t < τ`+1 for some ` this means that St ≥ Dt =∑

j:j>` αj .16 Note that Dt is an absorbing boundary for St due to the local
martingale property.

We define the adjust initial stock price

S∗0 := Ft −Dt = S0 −
∞∑

j=1

αj

as in equation (9) on page 7. This allows us to rewrite the claim (40) as

St = S∗0Xt + Dt .

To prove that we can always write S in this form, define reversely

Xt :=
St −Dt

S∗0

with the understanding Xt ≡ 1 for the case S∗0 > 0.
By construction, Xt is non-negative with X0 = 1. We will prove that it is

indeed a local martingale. The only contentious points are the dividend dates.
Fix some `. On the interval (τ`−1, τ`), we have

Xt :=
St −Dτ`−1

S∗0
=

St − (Dτ`
+ αj)

S∗0
,

16To see this, note that for each finite m > 0, we have St ≥
∑`+m

j=`+1 αj , i.e. St dominates

a monotone series which in turn implies that it dominates its limit.
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which is consistently defined over the dividend date τ`:

Xτ`
=

Sτ`
−Dτ`

S∗0
=

Sτ`− − (Dτ`
+ αj)

S∗0

This means that if τ`−1 ≤ t < τ`, then

E
[
Xτ`+ε

∣∣Ft

]
= E

[
Xτ`

∣∣Ft

]
= E

[
Xτ`−

∣∣Ft

]
= Xt ,

which shows that X is indeed a local martingale. ¤

Proof of theorem 2.1– In the presence of interest rates, borrow and proportional
dividends, we simply re-iterate the discussion above for a stock price process
S̃t := St/Rt (with “growth-rate discount factor” Rt defined in equation (8) on
page 7) which pays dividends α∗j := αj/Rτj

. This gives

St = (Ft −Dt)Xt + Dt

for the stock price without default.
To also take into account credit risk, we multiply the non-default case

with SV(0, t)1t>τ , which leads to the statement in theorem 2.1. ¤

B Basics

B.1 Ito for jump processes

Let X and Y be two random cadlag processes with finite activity jumps (for
example, a diffusion mixed with a Poisson-process). Denote by Xc and Y c the
continuous versions of X and Y , respectively, i.e. dXc = dXt−. Then,

dF (t,Xt, Yt) = ∂tF (t,Xt−, Yt−) dt

+ ∂xF (t,Xt−, Yt−) dXc
t + ∂yF (t,Xt−, Yt−) dY c

t

+
1
2
∂xxF (t,Xt−, Yt−) d〈Xc〉t +

1
2
∂yyF (t,Xt−, Yt−) d〈Y c〉t

+ ∂xyF (t,Xt−, Yt−) d〈Y c, Xc〉t
+

∑
t

{
F (t,Xt, Yt)− F (t,Xt−, Yt−)

}

If X and Y have jumps of infinite activity, then the above formula does not hold
and the following reformulation has to be used

dF (t,Xt, Yt) = ∂tF (t,Xt−, Yt−) dt

+ ∂xF (t,Xt−, Yt−) dXt + ∂yF (t,Xt−, Yt−) dYt

+
1
2
∂xxF (t,Xt−, Yt−) d〈Xc〉t +

1
2
∂yyF (t, Xt−, Yt−) d〈Y c〉t
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+ ∂xyF (t,Xt−, Yt−) d〈Y c, Xc〉t
+

∑
t

{
F (t, Xt, Yt)− F (t,Xt−, Yt−)

}

−
∑

t

{
∂xF (t,Xt−, Yt−) (Xt −Xt−) + ∂yF (t,Xt−, Yt−) (Yt − Yt−)

}

B.2 Replication of Convex Payoffs with European Options

For any convex function f , let

h1(x) := f(x0) + w1(x− x0) , w̃1 :=
f(x1)− f(x0)

x1 − x0

such that h1 ≥ f on [x0, x1] and h1(x1) = f(x1). On [x1, x2], set

h2(x) := f(x1) + w̃2(x− x1) = f(x0) + w̃1(x− x0) + (w̃2 − w̃1) (x− x1)

and

w̃2 :=
f(x2)− f(x1)

x2 − x1

Iteration and using

wk :=
f(xk)− f(xk−1)

xk − xk−1
− wk−1

with w0 := 0 yields that

h(x) := f(x0) +
n∑

k=1

wk(x− xk−1)+

dominates f on [x0, xn].
On the downside, we apply the same trick:

g(x) := f(x0) + w̃′1(x− x0) = f(x0)− w̃′1(x0 − x) , w̃′1 :=
f(y1)− f(x0)

y1 − x0

such that

h(x) := f(x0)−
m∑

k=1

w′k(xk−1 − x)+

with

w′k :=
f(yk)− f(yk−1)

yk − yk−1
− w′k−1
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