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Chapter 1

Introduction

Ever since Black, Scholes and Merton published their famous articles [BS73] and [M73], huge
markets of financial derivatives on a wide range of underlying economic quantities have devel-
oped. One of the most visible markets of underlyings is surely the equity market with index
level and share price quotes being a common part of today’s news programmes. Upon it rest
deep exchange-based markets of “vanilla” derivatives on indices and single stocks.

This development of course changes the way over-the-counter products (those which are
agreed upon on a case-by-case basis between the counter-parties) are evaluated and risk-managed.
While Black and Scholes (BS) used only the underlying stock price and the bond to hedge a
derivative in their model,! this cannot be justified anymore: their model is not able to capture
what is today known as the “volatility skew”, or “volatility smile”, of the implied volatility of
traded vanilla options. The root of the discrepancy is that volatility is not, as assumed in BS’
model, a deterministic quantity. Rather, it is by itself stochastic.

The stochastic nature of the instantaneous variance of the stock price process is particular
important if we want to price and hedge heavily volatility-dependent exotic options such as
options on realized variance or cliquet-type products.? Such products cannot be priced correctly
in the BS-model since their very risk lies in the movement of volatility (or variance, for that
matter) itself.

Beyond Black-Scholes

There have been many approaches to remedy this problem: the most pragmatic idea is to infer
an implied risk-neutral distribution from the observed market prices. To this end, Dupire [D96]
has completely solved the problem of finding a one-factor diffusion which reprices a continuum
of market prices. His implied local volatility is today a standard tool for evaluating exotic
derivatives.

However, the resulting stock price dynamics are not overly realistic since the resulting dif-
fusion is usually highly inhomogeneous in time. This implies that the model makes predictions
about the future which are not matched by past market experience. Most notably, the implied
volatility smile inside the model flattens out over time which is in contrast to the persistent
presence of this phenomenon in reality. This in turn means that the dynamical behavior of the
liquid options is not captured very well.

n fact, the model is due to Samuelson [S65], but it is common to call it “Black&Scholes model”.
2See section 1.1.2 for example payoffs.
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Conceptually quite different from this fitting approach are stochastic volatility models. In
these models, a parsimonious description of the dynamics of both the stock price and its in-
stantaneous variance is the starting point. Such a model is based on “structural” assumptions
on the underlying stock price. For example, Heston’s popular model [H93] assumes that the
instantaneous variance of the stock price is a square-root diffusion whose increments are cor-
related to the increments of the return of the stock price. Other popular stochastic volatility
models are Hagan et al. [HKLWO02], Schoebel/Zhu [SZ99] and Fouque et al. [FPS00] to name
but a few. In addition, there are also models which incorporate jump processes (see for example
Merton [M76], Carr et al. [CCM98]) or mixtures of both concepts such as Bates [B96]. A good
reference on models based on Lévy processes is Cont/Tankov [CT03].

Most of these structural models will lead per se to incomplete market models if only the stock
and the cash bond are considered as tradable instruments. As a result, there is no unique fair
price for most derivatives. To alleviate this problem in continuous models,? we have to extend the
range of tradable instruments. Broadly speaking, each additional source of randomness requires
an additional traded instrument to be able to hedge the resulting risk. This is called “completion
of the market” (see also Davis [Da04]). However, it not clear which traded instruments we have
to choose to complete our market.

Indeed, if we are to use the stock price together with a range of liquid reference options as
hedging instruments, a more natural approach would be to model directly the evolution of the
stock price and these reference options simultaneously. Such a framework has the advantage
that the options are an integral part of the model and that the model yields hedging strategies
directly in terms of the traded reference instruments.

The most prominent approach has been to model call and put prices via their implied volatil-
ities. This has been undertaken by Brace et al. [ BGKWO01], Cont et al. [CFD02], Fengler
et al. [FHMO3] and Haffner [H04], among others. However, to our knowledge, none of theses
stochastic implied volatility models is able to ensure the absence of arbitrage situations (such as
negative prices for butterfly trades) throughout the life of the model.

For this reason, some authors have focused on the term-structure of implied volatilities for
just one fixed cash strike. This approach has been pioneered by Schénbucher [S99] and has
recently been put into a more general framework by Schweizer/Wissel [SW05] who also consider
power-type payoffs. This approach is attractive for pricing strike-dependent options such as
compound options. However, the dependency on a fixed cash strike also implies that if the
market moves, the model’s fixed strike may drift too far out of the money to be suitable for
hedging purposes. This is of particular concern if we want to price and hedge mainly volatility-
dependent products such as options on realized variance or cliquets.

Consistent Modelling

In this thesis we propose to use variance swaps as reference instruments. Variance swaps essen-
tially promise the payment of the realized variance of the returns of the underlying to the holder:
their price is the market’s expectation of the realized variance of the returns of the stock up to
the maturity of the contract. As such, variance swaps are inherently strike-independent and a
natural candidate for volatility-hedging of volatility products: for contracts such as calls and
puts on realized variance, they are the equivalent of the discounted forward on the underlying.

3Models with random jumps can generally not be completed using a finite number of additional instruments.
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Before we take on the modeling of time-homogeneous Markov-models for variance swap
markets (which have the advantage of preserving their principle structural properties over time),
we first develop a theoretical framework of general variance swap term structure models. Indeed,
we closely follow the ideas of Heath-Jarrow-Morton (HJM) [HJM92] for interest rates: the term
structure of variance swaps will play the same role as the role played by term structure of
zero bonds in HJM’s framework. That means that instead of developing a model for the short
variance directly (which is the subject of stochastic volatility models), we describe the dynamics
of the entire implied variance swap price curve. From there, we construct compatible stock price
processes and their corresponding implied short variance dynamics.

In a second step, we specialize the general framework to models which are driven by a
finite-dimensional Markov process. The idea behind this type of models is that we first specify
a functional form for the implied variance swap price curve and then drive the parameters of
this curve in an arbitrage-free “consistent” way. (The notion of “consistency” originates again
from the interest-rate world, where it was discussed first by Bjork/Christenssen [BC99], and
Bjork/Svensson [BS01].) We will also discuss how a sensible instantaneous correlation structure
between stock and variance curve can be implemented such that the resulting vector of stock
price and curve parameters retains its Markov-property. These finite-dimensional processes are
easier to handle and provide a “structural” access to a variance curve model. However, since it
might be necessary to provide a perfect fit to the market under certain circumstances, we also
show how we can move from a “structural” variance curve model to a “fitting”-type model, such
as Dupire’s stochastic volatility model [Du04].

Hedging

All our models will be developed directly under a local martingale measure. This approach
ensures that there cannot be arbitrage in the model — but a second important question remains:
the question of completeness. Having argued that variance swaps are a suitable hedging instru-
ment in addition to the stock, we shall also provide the theoretical framework to assess when a
variance curve model (or, in fact, any general Markov-driven model) generates a complete mar-
ket. To this end, we show that if we only consider payoffs which are measurable with respect to
the information generated by the traded assets (in opposition to the information generated by
the background driving Brownian motion), then a financial model often allows the replication
of a payoff, even if the volatility matrix of the tradable instruments with respect to the driving
Brownian motion is singular: if a value function of an exotic product can be differentiated at
least once in the parameter of the market instruments, then these derivatives provide as expected
the desired hedging ratios. We will show that if the value function for each non-negative smooth
payoff function whose derivatives have compact support is always continuously differentiable,
then the entire market is shown to be complete. We will show that this is the case, for example,
if the coefficients of the diffusion which drive the market instruments are continuously differen-
tiable with locally Lipschitz derivatives. These ideas are put to use to obtain specific results in
the context of variance swap curve models, where we need to impose an additional invertibility
criterion on the variance curve functional in order to be able to back out the driving Markov
factors by observing only a finite number of variance swaps. We also discuss briefly aspects of
pricing if the asset in a market is a strict local martingale.

These results are all of theoretical nature. In practise, we cannot expect our model to fit
perfectly. Indeed, a model will have to be calibrated to observed liquid option prices and the
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parameters which we obtain from a daily re-calibration will not be constant, as assumed by
the model. Since the model itself does not provide a concept of hedging parameter-risk, it is
common practise to perform “parameter-hedging”: we are trying to find a portfolio of traded
options such that our overall position is (reasonably) insensitive to changes in the parameters.

We will put this idea of parameter-hedging into a theoretical framework and will also present
a new quick and efficient algorithm to obtain a “cheapest” portfolio of liquid options which both
satisfies the desired accuracy of the parameter-hedge and which also takes into account real-life
constraints such as transaction costs and transaction limits.

In a second part, we will then discuss the impact of the practice of re-calibration to the
“meta-model” of the institution, in particular the question whether the real-life price processes
which are the result of this recalibration remain local martingales. We will show that this is for
example not the case if the speed of mean-reversion or the product of “volatility of variance”
and “correlation” in Heston’s model are not kept constant. Similar results are shown for other
mean-reversion type models.

In the course of the discussion we also introduce what we will call “entropy swaps”. They
are closely related to another product, called “gamma swaps” or “weighted variance swaps”.
Appendix A.1.2 is devoted to the latter structures.

Practical Implementation

The third part of this thesis is the application of the first two parts: we discuss the implemen-
tation of a double mean-reverting variance curve model. It is shown that the proposed model is
well-defined and that the associated stock price process is a true martingale. We then proceed
and discuss a Monte-Carlo implementation which allows efficient evaluation of exotic products.
The resulting engine is finally used to calibrate the model in a multi-phase calibration routine.
Even though the routine is based on Monte-Carlo, it is still relatively fast and yields good results
for most major indices. We also employ efficient algorithms to detect arbitrage in European
option markets and show how market data which violate arbitrage-conditions can be fixed.

Outline

This thesis is split into three consecutive parts: the first part is concerned with the development
of variance swap curve models, the second part covers theoretical and practical issues of hedging
and the third part discusses the implementation of a four-factor variance curve model.

Part I: Consistent Modeling

In section 2.2, we start by introducing general HIM-type variance curve models. We discuss
basic properties and derive a Musiela-type parametrization. This approach has been introduced
in [BO6b]. We show that we can always construct an associated stock price which is at least a
local martingale and mention a convenient method to determine whether it is a true martingale.
The difference between fitting and structural models is also discussed.

In section 2.3, the framework is specialized to models where the variance curve is driven by
a finite-dimensional homogeneous Markov-process: we develop the notion of a consistent pair
(G, Z) of a variance curve functional G and a parameter process Z which drives this functional
such that the resulting variance swap prices are local martingales. This is the fundamental
idea of a Markov variance curve market model (it is also shown in remark 2.23 that implied
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local volatility can in fact be modeled within our framework). In section 2.4, we apply results
from Bjork/Christenssen [BC99], and Bjork/Svensson [BSO01] for the interest rate world and
investigate when a Hilbert-space valued variance curve can be represented by a finite-dimensional
realization.

Section 3 is devoted to examples: we present mean-reverting curve functionals (which lead
to Heston-type models), double mean-reverting functionals (based upon which we develop a
model in chapter 6) and other curve functionals which appear in the literature. We discuss two
approaches which allow to turn a structural model into a fitting model in section 3.4.

Part II: Hedging

This part is divided into a first section on theory of complete markets and a second section
which is concerned with the practise of parameter-hedging.

We start in section 4.1 by introducing the products we aim to replicate. Following the ap-
proach in [BT06], we then consider a general setting of a Markov-driven complete market in
which we relax various standard assumptions in the literature (on the cost of stronger regu-
larity assumptions). In particular, we will show that as long as the model “weakly preserves
smoothness”, the vector of traded instruments (with potentially an additional processes of finite
variation) is extremal on its filtration, even if the volatility matrix is singular. This situa-
tion is not covered in most of the literature. To “preserve smoothness weakly” means that all
non-negative smooth payout functions with compact support have value functions which are
continuously differentiable in the price levels of the traded instruments. We point out that this
holds for a diffusion, for example, if its drift and volatility coefficients are locally Lipschitz and
continuously differentiable with locally Lipschitz derivatives.

The finding that such a condition is sufficient for market completeness is as important as it is
intuitive: it shows that if we only consider payoffs which depend on the information generated by
the observable tradable instruments (as opposed to the unobservable driving background Brow-
nian motion), then we can replicate such payoffs with the tradable instruments as long as they
are mildly well-behaved as specified above. Essentially, the result is that “delta hedging works”
if the value function of a payoff is differentiable in the spot levels of the tradable instruments.

All this is then put into the framework of our variance swap curve models in section 4.2.3:
an additional complication stems from the availability of an infinite number of variance swaps.
We will give sufficient conditions under which it is possible to make use of only a finite number
of variance swaps to hedge any exotic payoff. We also show how “variance swap deltas” can be
computed in Markovian models.

We turn to practical issues in chapter 5: there, we will introduce the concepts of “calibra-
tion”, “recalibration” and “parameter-hedging”. We will put these ideas into a mathematical
framework and will then discuss in section 7.3 an efficient algorithm which allows selecting a
hedging portfolio from a large number of traded instruments under constraints. This algorithm,
and the subsequent generation of compatible transition kernels (appendix D), has been presented
in [B06a].

Afterwards, we turn to the theoretical implications of the practise of parameter-hedging:
in section 5.3, we show that some of the parameters of models such as Heston or other mean-
reverting models cannot be recalibrated if we want to avoid “dynamic arbitrage”. This has also
been highlighted in [BO6b]. Additionally, we introduce in section 5.3.1 “entropy swaps” which
allow us to extend the results for Heston’s model. Appendix A.1.2 discusses a closely related
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product, called “gamma swaps”. These products are discussed in more detail in [BBFJLOO0G6].

Part III: Practical Implementation

This part of the thesis shows how a Markov variance curve market model can be implemented.

We present the four-factor model which provided good fits to observed market data and
discuss its mathematical properties in section 6.1.1: we show that its SDE has a unique solution
and that the stock price is a true martingale. The following section, 6.2, is then devoted to the
implementation of an efficient unbiased Monte-Carlo Milstein scheme which can be used to price
exotic payoffs. We also show how European options can be priced particularly efficiently. This
extends the discussion of this model in [BBFJLOO06].

These pricing methods are then used to calibrate the model. The calibration is performed in
several steps: first, the market data of European options is checked for arbitrage and, if necessary,
corrected (we present efficient algorithms for this purpose). In a next step, we calibrate the
states of the model from the observed variance swaps prices. The remaining parameters are
then calibrated using the European option prices.

We present example calibrations and discuss the behavior of the model in a few applications
before we conclude in section 8.

1.1 Basic Assumptions

Since we aim to develop a methodology to price and hedge strongly volatility-dependent prod-
ucts, we choose to simplify the situation by assuming that the prevailing interest rates are zero
and that the stock has a constant forward of 1. It is shown in appendix A.2 that this simpli-
fication is essentially the same as assuming that the interest rates and the forward, including
potential proportional dividends, are deterministic.

Moreover, we will assume:

ASSUMPTION 1 The stock price process is continuous.

1.1.1 Variance Swaps

A zero mean variance swap with maturity T is a contract which pays out the realized variance
of the logarithmic total returns up to 7' in exchange for a fixed strike (we can assume without
loss of generality that this strike is zero).

The annualized realized variance of a stock price process S for the period [0, 7] with business
days 0 =tg < ... < t, =T is usually defined as

The constant d denotes the number of trading days per year and is usually fixed to 252 such
that d/n =~ 1/T. An example term sheet of a variance swap can be found in appendix B.* A
standard result (e.g. Protter [P04], pg. 66) gives that

2
n St’(L
1 =1l 1 : 1.1
(log S)r lim Z(Ogsw ) : (1.1)

4In the presence of dividends, the returns of the stock are adjusted accordingly to eliminate the effect of the
dividends; see appendix A.2.
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where the limit is taken over a fixed sequence of refining subdivisions (0 =t§ < - <7 =T).5
To ease the modeling of variance, we will ignore the deterministic scaling factor 1/7T" and we will
assume that (1.1) holds. This approximation works very well for variance swaps, but care should
be taken in practise if we price short dated non-linear payoffs on realized variance, cf. remark 7.26
on page 125. See also Barndorff-Nielsen et al. [BNGJPS04] for a discussion on the error of this
approximation.

ASSUMPTION 2 A wariance swap with maturity T pays the realized quadratic variation (logS)r
to the holder.

A price at time t of a variance swap with maturity T < oo will be denoted by V,(T). We set
Vi(T) = Vp(T) = (log S)r if t > T for notational convenience.

The market convention of quoting a variance swap is not its mere price, Vo(7T). Rather, the
market quotes its “variance volatility” (also called “VolSet”) which is the strike K such that

1
—(log S)r — K*
T< gS)r

has zero initial value (hence the name variance “swap”).

DEFINITION 1.1 We call
Vo(T
Ko(T) := O:(r ) (1.2)

the variance swap volatility of the variance swap with maturity T .

These variance swaps will be the cornerstone of our investigation. We shall develop hedging
strategies which involve dynamic hedging of an exotic payoff with such variance swaps. Such
hedging strategies can only work if the underlying assets are liquid enough and if there is a
well-developed market for them. Hence, let us make a third fundamental economic assumption:

ASSUMPTION 3 A liquid® and frictionless’ market of variance swaps on S exists for all maturi-
ties T < co. In particular, at any time t, there are variance swap prices Vi(T) for t <T < oo
available in the market.

REMARK 1.2 Assumption 3 is nowadays largely satisfied for the world’s main indices such as
SPX, NDX, STOXX50E, GDAXI, FTSE, N225 and so on,® but it should be noted that at the
time of writing all those markets are broker markets.”?

However, we arque that this is not a fundamental problem because most investment banks
will be able to quote an internal fair price with a very tight spread. Hence, the desk which is to
run the risk management for, say, options on variance can use the variance swap desk’s internal
valuation for their risk management.

,,,,,

"There are no transaction costs, taxes or bid/ask spreads.

8We refer to the indices via their Bloomberg codes.

9This means that transactions can not be made via an exchange and that bid/ask spreads remain relatively
high: e.g on September 26th 2005, the spread on a very liquid STOXX50E December 2006 variance swap is
around 0.5 volatility points compared with 0.25 volatility points on an ATM European option with the same
maturity). Also, the ability to trade continuously is constrained as each transaction is executed on a case-by-case
basis.
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Variance Swap Market Prices
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Figure 1.1: Example variance swap prices. The rices are quoted in “variance swap volatility” (1.2).

1.1.2 Options on Variance

Since we are going to model directly the prices of variance swaps, they become an input in our
framework. The idea is to use a variance swap market model to price more exotic products.
The most obvious class of structures which is suited for our approach is what we call “options
on variance”.

Here are a few examples of such products (precise definitions of the terms “options on
variance” and “options on realized variance” can be found on page 60):

EXAMPLE 1.3 Standard vanilla options on realized variance are calls and puts on realized vari-

ance,'V

(%<log5)T—K2>+ and <K2—%<1OgS>T)+ )

or European options on realized volatility,

N
( ;(logS>T—K> and (K— ;<logS>T>

Other “options on variance” are options on forward variance swaps,

Vr(Ty) — (log S) +
< T 2T2_T T_K2>

+

where Ty > T'. This is an option on a variance swap with maturity T which starts at time T'.

Appendix B provides an example term sheet for a call on realized variance and a sheet for a
volatility swap (i.e., a zero-strike call on realized volatility).

Such plain options on variance might be the most obvious application of a variance swap
market model, but they are not the only products which can be priced and hedged within

10Strikes K are usually quoted in “volatility”, hence the squared K in the payoffs to normalize them to (annu-
alized) variance.
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the framework presented here: since our approach also provides a consistent way to define a
correlation structure between the stock and its instantaneous variance (see definition 2.22),
such models are also well-suited to risk-manage classic “volatility” products if the correlation
structure is well-defined.

Examples are:

o Forward-Started calls:

for 0 < Ty < Ty and k > 0.

e Globally floored Cliquets:

d +
{Zmin <LocalCap, max < SSTi -1, LocalFloor>> } ,

i—1 Tia

for 0 =Ty < --- < Ty and LocalFloor < 0 < LocalCap.

{or (5}
C 4+ min -1 ,
i=1,...d \ ST, _,

for0=Ty<---<Tyand C > 0.

(= (520) )

A term sheet for a Napoleon structure can also be found in appendix B on page 147.

e Napoleons:

e Multiplicative Cliquets:

for0 =Ty < --- < 1y.

1.2 Mathematical Notation

For most of the discussion we will adapt the notation of Revuz/Yor [RY99].

Basics

We will make use of the standard notations xVy := max(z,y), zAy := min(z,y) and 7 := z V0.
The symbol R+ denotes all strictly positive real numbers > 0 while R>¢ is the set of all non-
negative numbers. We will write both A C B and A C B to denote z € A = x € B (the symbol
C is used to indicate it is common that A = B). If A is a strict subset of B, we will write

A G B. The transpose of a vector
I

Zd
is denoted by #’. Since most vectors are considered column vectors (it will be explicitly mentioned
if they are row vectors), we omit the prime if written in text; i.e.x = (x1,...,z4) shall denote
the same column vector as above. Moreover, we write R¥™ for the space of matrices with d
rows and m columns; for M € R?™ we denote by MZJ the element with the jth column and the
ith row (see equation (1.3) below for an example).
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Measurability and Integrability

The Lebesgue measure on R? is denoted by A% and we set A := \!.

Let A be a o-algebra. We use LP(A,P) to denote the A-measurable random variables X
such that Ep[|X|P] < oo (the notion of the measure is omitted if P is clear from the context).

Given a topological space U, we denote by B(U) its Borel-o-algebra. For the canonical
Wiener space, P denotes the predictable o-algebra on C0,00) X R>.

Let X = (X;);>0 be a stochastic process. We denote by FX = (F{X);>¢ its complete right-
continuous filtration. Note that any process X defined up to T' < oo can be defined for ¢ > T as
X = Xp. For a given filtration F, an adapted process X and an F-stopping time 7, the stopped
process is defined as X7 := X a¢.

If G = (Gt)t>0 is a second filtration, we say G is a sub-filtration of F, denoted by G C F, iff
Gt C F; for all t. For two o-algebras A and B, we also define A\/ B as the joint o-algebra.

Stochastic Integration

Let G be a complete and right-continuous sub-filtration of F, and let Q be a measure on F.
A process X = (X;)i>0 is called a (G, Q)-martingale on the stochastic base (2, Foo,F,P) if
Xr € LY(Gr,Q) for all finite T and Eg[ X7| G| = X; for all t < T < oco. Note that we do
not require limo, X; to exist or to be defined: we will consider martingales up to arbitrary but
only finite 7T'.

The space of all continuous (G, Q)-martingales X = (X;)i<r with horizon T < oo is de-
noted by Hr(G, Q). We also use H4(G, Q) for all continuous square-integrable martingales and
HRE(G, Q) for all continuous local martingales, i.e. those processes X = (X;)¢>0 such that there
exists an increasing sequence of stopping times 74 < 7441 with limgo, 74 = T such that X7 is
element of H%(G, Q) for each d. Note that the stopping times can be chosen in a way such that
X7d is bounded.

To ease notation, we will omit the notion of the measure or the o-algebra if it is clear from
the context.

For a d-dimensional martingale X = (X!,..., X9) € H2(G,P) we define the set of admissible
integrands L2.(X; G, Q) as all G-predictable processes ¢ = (¢t)tefo,7) such that

d T
Eq [Z/O H%H%d<X’>s] <00 .
i=1

The space LIYQC(X ; G, Q), on the other hand, is the space of integrands for the local martingale X,
i.e. all G-predictable process ¢ = (¢t)ieo, 7] such that

d T
iQdXiS
@L;/O o I3 d(X7), < 0o

Note that this property is invariant under equivalent changes of measure.

=1.

For all of the symbols HY, Hlﬁc, L2T and Llﬁc, we drop the notion of T' if the respective
property holds for all finite 7.
Notation of Stochastic Integrals

Let i : R™ — R™ and o : R™ — R™*¢ be measurable functions. Assume X is a d-dimensional
continuous semi-martingale in the sense of Revuz/Yor [RY99]. Let Yy € R™ and assume that
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Y = (Y;)e>0 satisfies:

t d t . .
vi=vi [uvds+ S [alwax] (1.3)
0 — Jo
7=1
for i = 1,...,m (note the notation of the matrix Ug(y) according to our convention above).

We write this equation also as

t d
V=Yoot [u(v)ds+ Y [ol(vax;
0 =170
or, even more compact,
t t
Yi=Yo+ [a¥ds+ [o(V)dx. .
0 0

Finally, we denote by £(X) the Doléans-Dade exponential

£/(X) = exp {Xt _ ;<X)t}

of a semi-martingale X.



Part 1

Consistent Modelling
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Chapter 2

Consistent Variance Curve Models

In this chapter, we introduce the theoretical framework for models which are designed to capture
the market prices of variance swaps alongside the stock price. Our initial approach is very similar
to the well-known Heath-Jarrow-Merton (HJM) approach to interest rate modeling [HJM92].
We will then specialize the general case in section 2.3 to finite-dimensionally parameterized
models which are easier to handle in practise.

We will start with an overview in which we will also formulate the main problems (P1) to (P3)
which this chapter addresses. Technical details and definitions will follow in section 2.2 page 21ff.

Examples are presented in chapter 3; issues of market completeness and practical implications
of hedging are the subject of chapter 4, while chapter 5 will use the results of chapter 3 to show
how recalibration of stochastic volatility models can lead to static arbitrage in the “meta-model”
of the institution. In particular, it is shown that the speed of mean-reversion in mean-reverting
variance curve models must be kept constant. Chapter 6 then presents the implementation of
an example model.

The core theory discussed here has been presented first in [BO6b]. The theory is also dis-
cussed in a more applied context in Bermudez/Buehler/Ferraris/Jordinson/Overhaus/Lamnouar
[BBFJLOO06], where additional examples and practical applications are presented.

2.1 Problem Statements and Overview

The most fundamental question when modeling variance swaps and the stock price is clearly

absence of arbitrage:

ProsBLEM (P1)

Given today’s variance swap prices Vo(T') for all maturities T € [0,00), we want to model the
price processes V(T') = (Vi(T'))iejo,00) and the stock price S together, such that the joint market
with all variance swaps and the stock price itself is free of arbitrage.

Apart from the additional presence of the stock price, this closely resembles the situation
in Heath-Jarrow-Morton (HJM) interest rate theory where the aim is to construct arbitrage-
free price processes of zero bonds. We carry this similarity further and introduce the forward
variance curve (v(T'))r>o of the log-returns of S, defined as

v(T) :=0rVi(T) T,t>0

17
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on some stochastic base W := (Q, F, P, F) which supports an extremal Brownian motion W.!

We then have a HJM-type result, namely that (under the assumptions of the next sec-
tion) v(7T") must be a local martingale for each T" and therefore has no drift. This will be carried
out in section 2.1, where we will also introduce the “Musiela-parametrization” ¢ of v in terms
of a fixed time-to-maturity x,

O(z) ==v(x +t) x,6>0.

It is then also shown in theorem 2.13 that for all Brownian motions B on W the market of all
variance swaps (V(T'))re[0,00) and the B-“associated price process” S, defined by

Sy = &(X)
dXt = \/’L)AO) dBt }

is free of arbitrage because S is a local martingale. In such a case we call the curve v a variance

(2.1)

curve model, and B has the intuitive meaning of a “correlation structure”. We want to emphasize
that these no-arbitrage-conditions are very straightforward to enforce, in remarkable contrast to
the severe difficulties in this respect with the “stochastic implied volatility models” mentioned
in the introduction.

REMARK 2.1 We want to stress that we do not attempt to develop a model to price variance
swaps — on the contrary, we assume that their market prices are given; we want to make use
of this information to construct a market model of variance.

Finite-Dimensional Realizations

In practise we are interested in forward variance curves which are given as a functional of a
finite-dimensional Markov-process: we aim to represent ¥ as

ﬁt(.iL‘) = G(Zt,x) (22)

where G : Z x R>g — Rxq for Z C Rgo open is a suitable non-negative function and where Z
is an Z-valued Markov process which is a strong solution to an SDE
d . .
dZ; = p(Zy)dt + > o/ (Z)dW]  Zy € 2 (2.3)
j=1
defined in terms of the d-dimensional standard Brownian motion W. A pair (G, Z) is called

consistent iff (2.2) defines a variance curve model for all Zy € Z. This leads to the natural
question:

ProBLEM (P2)
When are a parameter process Z and a functional G consistent?

This will be addressed in section 2.3, and we will show in theorem 2.24 that consistency essen-
tially implies
1
0aG(2:7) = u(2) 0:G(2;2) + 50%(2) 02:G(2) -

LFor details and a precise setup, please refer to section 2.2.
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In this case, if the “correlation structure” in (2.1) is given in terms of a measurable “corre-
lation function” p: Z x Rsg — [~1,+1]% such that S = £(X) satisfies

d
dSy = \/6:(0) D Sip? (Zs, i) AW |
j=1
then we call the model a Markov variance curve model (definition 2.22): the vector (Z,S) is
Markov and we will see in part II of this thesis that (under regularity assumptions) these kinds of
models are also extremal on their filtration (theorem 4.19), i.e. that they allow the computation
of their hedging ratios by differentiating the value function of a payoff in the stock and state
parameters (corollary 4.21).

These results are closely related to the concept of “finite-dimensional realizations” (FDR)
for HJM interest rate models, as introduced by Bjork/Christensen [BC99] and Bjork/Svensson
[BSO01]: we say that “a variance curve model ¢ admits an FDR”, if for every z € Z there ex-
ists a consistent pair (G, Z) such that v,(-) = G(Z;-) up to a strictly positive stopping time.
Note that we now understand o;(-) and G(Z;; -) as functions, and therefore omit the argument x.

ProBLEM (P3)
Given a family © and a smooth functional G, when will 0 admit an FDR in terms of G?

We will solve this problem locally in Section 2.4 by following closely ideas from Filipovic/Teichmann [FT04]:
writing © as a solution to an H-valued SDE in an Hilbert-space H

d
diy = Opbydt +» bl (6,) AW} (2.4)
j=1
we show in Theorem 2.29 that v stays locally in G(Z) C dom(9,) if
V(o) € oG
for j =0,...,d and © € G\ 0G. The first component b° is the Stratonovich-drift of o,
1 d
Orsy A o
bj(0) = Oni — 5 ;1 DV (%) v (0)

(we also show the relevant conditions on the boundary of G). Additionally, we prove that if ©
stays locally in G and if G is invertible, then it has a finite dimensional representation

’[)t — G(Zt)
in terms of a (locally) consistent parameter process Z which is explicitly given in terms of b
and G.

2.1.1 Review of the Stochastic Volatility Case

For illustration, we assume in this subsection that we are given a continuous stock price process
as a positive continuous local martingale S on a stochastic base W = (2, Foo,F,P) whose
complete and right-continuous filtration F is generated by an d-dimensional Brownian mo-
tion W = (W1 ..., Wd). We also assume that its variance swap prices are finite.
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This subsection is intended to build some understanding of the required properties of a
variance swap model, but from a logical point of view it can be omitted and the reader may
immediately proceed to section 2.2 on page 21.

PROPOSITION 2.2 If S is a positive local martingale, we can write it as
Se = &(X) (2.5)

where

t
X, = / V¢ dB (2.6)
0
for some \/C € L' and a Brownian motion B. Moreover, X € H>.

Proof — Since S is a positive local martingale, we can write S; = £/(X) for some continuous local
martingale X (cf. [RY99] pg. 328, prop. 1.6).

Hence, there exists z € L°¢(W) such that X; = Z?Zl (fzg dW! and therefore d(X); = ¢, dt
with ¢ := Z?Zl(zg)Q. Moreover, {; 21,0 is a valid integrand for X since E[fg(;llcs>0 d(X)s] =
E[[l¢,>0 ds] <t < oo. Therefore, we can define

tl t
Bt::/ls OdXtJr/lsodWl,
o VG 0 ¢ :

compare also [RY99] pg.203.

We have (B); = fg (C;2C52145>0 + lgszo) ds = t, and since B is clearly adapted and contin-
uous, it is a Brownian motion with the required property (2.6). Since the variance swap prices
for all finite T are finite by the initial assumptions, we have E[fOTCS ds] < o0,ie. X € H2. O

Hence, any positive continuous stock price process can be written as a “stochastic volatility
model” (such as the examples in chapter 3 or the model discussed in chapter 6)

@:\/EdBt.
St

Note, however, that the joint process (5, () will generally not be Markov.

Variance Swaps

Since variance swaps are assumed to be tradable at any time ¢, the time-t price V;(T') is given
as the expectation of the quadratic variation of log S under a martingale pricing measure P:?

T
WH:MHM$ﬂﬂhﬂﬂA@@

}"t] . (2.7)

It is clear from standard arbitrage-theory that the measure P is in general not unique, i.e.the
price processes V (T') of the variance swaps with maturities T > 0 are in general not determined
by specifying the stock price process (5, () alone.

It is therefore necessary to fix a pricing measure, which we will assume for the remainder of
this subsection is P. We want to stress that by constructing directly the variance swap prices
(which is the subject of this thesis), the prices of variance swaps are given by the market and any

2Under each martingale pricing measure, the price process of each variance swap are by definition martingales.
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pricing measure must have property (2.7). Chapter 4 is devoted to questions of completeness in
variance curve models.

Given that V(T is a martingale and due to the extremality of W, we find some b(T) € L'
such that

d
Vi(T) = Vo(T) +Z/bg(:r) awi |
j=1"0

REMARK 2.3 (Pricing Variance Swaps using European Options)
Neuberger [N92] has shown that the price of a variance swap in the present framework can be
computed as

[eo]

1 1
Vo(T) = Q/OKQPO(T,K)dK—i—2/1 ol K) dK

where Po(T, K) and Co(T, K) denote quoted put and call option prices with maturity T and
strike K. Note that option prices for all strikes are needed for this formula, which can make
this way of pricing variance swaps very sensitive to the specification of out-of-the-money implied
volatilities, in particular those on the downside where the option weights are high.

The above formula is proved in appendix A.1 where we also discuss the impact of dividends
and interest rates.

Forward Variance

By construction, the curve Vi(-) is at any time ¢ absolutely continuous with respect to the
Lebesgue measure A, hence we can define A-almost everywhere the derivative along 7',

which is called the fixed maturity T-forward variance seen at time ¢ (note that v,(T) is well-
defined for T' > t). Note the conceptual similarity with the forward rate in interest rate modeling.

PRrOPOSITION 2.4 (HJM-Condition for Forward Variance) For all T > 0, the process v(T) =
(ve(T'))e>0 defined by (2.8) is a martingale which can be written as

o) = vo(T) + /0 5.(T) W, (2.9)
with B(T) = Opb(T) € L¢3

2.2 General Variance Curve Models

We now introduce our variance curve models: We want to specify the forward variance price
processes v(7T'), which we imagine as the expected future instantaneous variance as in the previous

3The fact that B(T) = drb(T) follows because for each T, (2.9) holds. Integration along T and exchanging
integration gives that fOTvt(u) du — fOTvo(u) du = fot fOTﬂs(u) du dWs, the right hand side of which is equivalent
to Vi(T) — Vo(T'). The uniqueness of the martingale representation of V(T') then shows that 3(T) := 9rb(T)
: loc
in L'°°(W).
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section. This process should allow us to construct a stock process such that the joint market of
stock and variance swaps is arbitrage-free.

As before, we assume that we are given a stochastic base W = (Q, F, F, P) which supports
an d-dimensional P-Brownian motion W which is extremal on the complete and right-continuous
filtration F = (F¢)¢>0. This means that for any local martingale X € H'°¢ there exists an
@ € L'°(W) such that

X, = Xo—l—Z/gode]

This property is also called the predictable representation property, or PRP. Finally, we also
assume that (€2, Foo) is Polish (for example, if it is the standard Wiener space). This is required
in proposition 2.10 below.

Recall that according to assumption 1, there are no interest rates and the forward process
of the underlying stock price (which we have to model) is constant 1.

DEFINITION 2.5 (Variance Curve Model) We call a family v = (v(T'))r>0 of processes v(T') =
(v¢(T"))e>0 a Variance Curve Model on W if:

(a) For all T < oo, v(T) is a non-negative continuous local martingale with representation

d
dvi(T) = B(T) dW} (2.10)
j=1

for some B(T) € L'¢ (this is the “HJM-condition” for variance curves).

(b) For all T < oo, the initial variance swap prices are finite,
T
Vo(T) ::/ vo(x) der < oo . (2.11)
0

(c) The process v.(+) is predictable (for example, if vi() is left-continuous).
The family v is called a strong variance curve model, if v(T) is a martingale for all finite T

By proposition 2.4 it is clear that forward variance must be a local martingale. Finiteness of the
variance swap prices is a very natural assumption if we want to use them as liquid instruments.
Condition (c) is technical and used below to ensure that the short variance is well-defined.

PROPOSITION 2.6 Let v be a Variance Curve model. The variance swap price processes V. =
(V(T))rs0 given as

T
Vi (T) ::/0 ve(s) ds (2.12)

are local martingales with dynamics
d
dvy(T Z T)dwy

where b] fo 575 s)ds. They are true martingales if v is strong.
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Proof — It is clear that V(1) defined by (2.12) is adapted and therefore is a local martingale.
If v is strong, then we have Vi(T) = E[ Vp(T)| F:| and Vo(T') by (2.11), hence V(T') is true
martingale for all finite 7. The representation of V' via b follows easily from (2.10) and the
uniqueness of the representation of V(7T') with respect to W. O

Given a variance curve model, we call the positive process

Gt == ve(2) (2.13)

the short variance of v. It is well defined by the requirements of definition 2.5. Given that v(7T')
is a supermartingale (because it is a non-negative local martingale; cf. page 24), we have

T T
EU Csds} :/ E [vs(s)] ds < Vo(T) < 0o ,
0 0
and it follows that process 1/C is in L2. This justifies the following definition:

DEFINITION 2.7 (Associated Stock Price Process) For any variance curve model v and an arbi-
trary real-valued Brownian motion B on W, the B-associated stock price process is defined as
the local martingale

t
Sy = E(X)  with X;:= / V¢ dB; . (2.14)
0

The process X is in H? and if v is a strong variance curve model, then the variance swap prices
on S are given as

E[(logS)r| Fi] =E[(X)r| Fi] = Vi(T) ,
where V' was defined in (2.12).

It follows then directly by construction

THEOREM 2.8 (Variance Swap Market Model) Let v be a variance curve model, B a Brownian
motion and S its associated stock price process. Then, the joint market (S, V') is free of arbitrage
and we call (S,V) a variance swap market model.

We call it strong if v is strong and if S is a true martingale.

We see a very convenient property of the current model approach: once the variance curve
model is fully specified by vg and the volatility structure 3, an associated stock price process
can easily be constructed to yield a full variance swap market model which is free of arbitrage.

REMARK 2.9 (Interpretation of B) Note that each B defined on the stochastic base W can be
written as

d
dBy = pj dW/
j=1

in terms of some stochastic “correlation vector” p € L2(W) with p; € [~1,+1]% and ||p¢]l2 = 1.
Since the Brownian motion B defines the “correlation structure” of S with its variance
process, B has the intuitive meaning of a “skew parameter”.

Note, however, while B can be chosen arbitrarily to yield a local martingale S, more care must
be taken if S is required to be a true martingale. For example, we can try to satisfy Kazamaki’s
criterion, cf. Revuz/Yor [RY99] pg. 331, or Novikov’s criterion, pg. 332. If the latter is satisfied,
then S is a true martingale for all Brownian motions B. Another useful result bases on a nice
argument from Sin [S98], which we will present in the next section.
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2.2.1 The Martingale Property and Explosion of Variance

Let S be defined as in (2.14). Since it is a strictly positive local martingale, it is a supermartin-
gale, i.e.E[S7] < E[Sy] = 1.* We now want to derive a condition under which S is a true
martingale: we will show that S is a martingale if and only if the variance process under the
measure associated with the numeraire S does not explode.

To this end, let now 7, ;== inf{¢: {, > n} and 7 := sup,, 7,. The stopping time 7 is called
the explosion time of ¢ and we say “( explodes under a measure Q" if Q[r > T| > 0 for some
finite T'. Note that ¢ does not explode under P per construction, i.e. P[r < T] = 0.

We fix some finite 7. For n = 1,2,... Define the o-algebra G, := F, ar and the discrete
time process Dy, := S;, rr. Note that D = (D,,),, is a martingale on the filtration G = (G,,),, but
that it is not necessarily uniformly integrable. However, on each G,,, we can define a probability

measure

P"[A] :=Ep[Dnls] A€Gy.

Since (2, Fx) is Polish, so are (2,G,,) and (€2, Goo) where Goo = Fr. Thanks to Kolmogorov’s
extension theorem (see, for example, Aliprantis/Border [AB99] corollary 14.27), there exists a
measure P° on Fr which is Kolmogorov consistent with the sequence (P"),cn, i.e.

PS[A] =P"[A] for all A € G,,

Intuitively, this is the measure where S is taken as a numeraire (in a localized sense). Its
Lebesgue decomposition w.r.t. P is given as

PY[A] =E[Sr1a]+P[AN{r < T} (2.15)
where the last component is singular to P. In particular, (2.15) implies for A = 2 that
1=E[Sr]+P°[r <17,
hence we obtain the following generalization of Sin’s idea [S98]:

PROPOSITION 2.10 The stock S is a martingale if and only if ¢ does not explode under P.

We will make use of this proposition in chapter 6, section 6.1.1, to prove that the stock price of
the model discussed there is indeed a true martingale. The interested reader finds a few more
results on explosions in general diffusion models in chapter 10 of Stroock/Varadahan [SVT79].
We will comment on the pricing and hedging in the case where S is a strictly local martingale
in section 4.2.2.

2.2.2 Fixed Time-to-Maturity

In the sprit of Musiela’s parametrization [M93] of forward rates, we now introduce the respective

process for variance curve models:
DEFINITION 2.11 We call
Op(z) = v (t + )

the fixed time-to-maturity forward variance, and V;(z) := Jo0e(s) ds the fixed time-to-maturity

variance swap.

Let S := S,, A+ for a localizing sequence (Tn)n of stopping times. On T' < 7,,, ST = S;"'l = St, hence, by
Fatou, E[S7]| = E[liminfp1e ST | < liminfpie E[ ST | = So.
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Note that above definition is valid for each fixed ¢ and almost all w. To define a proper process ¥,
we have to impose some additional regularity on v.

PROPOSITION 2.12 Let v be a variance curve model. Assume that vy is differentiable in T, that 3
in (2.10) is B[R] x P-measurable® and almost surely differentiable in T with

T
\// O-B1(T)2dT € L'°(W)  forj=1,...,d and all T < oo and T* < co. (2.16)
0

Then, Orvi(T) coincides a.e. with Orve(T) = Orve(T) + Zj 1f08Tﬂj dWJ and the fized
time-to-maturity forward variance 0(x) is of the form

t d t '
() = Go(z) + /0 Opts(x)ds + 3 /0 B3 () AW (2.17)
j=1

where 3(z) == B(t + z).
Proof — With the assumptions above, we have
() = w(t+x)

t
29 vo(t+x)+/ﬁu(t+x)qu
0

. +/t8Tvo(s+:c)ds—|—/t{ﬂu(u+x)+/t8Tﬂu(8+x)ds} v,
Y () + /t{ﬁTvo(s—F:c /8Tﬂu s+ x) dW, } d5+/ Bu(u + z) dW,
/am (s + ) d5+/ Bl

- /87% ds+/ Bul)aw,

as claimed. Equation (x) follows because of (2.16): property (2.16) basically ensures that
fo&pﬁu ) dW,, is a local martingale (see, for example, Protter [P04] pg. 208). O

—
*
~

The reverse of the previous proposition constitutes the HJM-condition for the fixed time-
to-maturity case: Assume we start with a family 0, when defines v(T") := 0:(T — t) a variance
curve model?

THEOREM 2.13 (HJM-condition for Variance Curve Models) Let v = (0(x))z>0 be a family of
non-negative adapted processes v(x) = (0¢(x))e>0 such that:

(a) The curve ©(-) is almost surely in C*.

(b) The process v(x) has a representation

Aoy (z) = 8,0, (x) dt + Zﬂﬂ ) dW . (2.18)

SRecall P was the predictable o-algebra on © x R>o.



CHAPTER 2. CONSISTENT VARIANCE CURVE MODELS 26

(¢) The prices of variance swaps VO fovo s)ds are finite for all v < co.

(d) The volatility coefficient 3 in (2.18) is C* and satisfies \/fox* axﬁg(m)Q dx € L for all
finite x*.

Then, the family v = (v(T'))rej0,00) given by
(T —t) t<T
T) := 2.19
w(T) {@T(O) t>T (2:19)

defines a variance curve model. If, moreover, v(T) is a true martingale for all T, then it is a
strong variance curve model.

Proof — We have to satisfy the conditions of definition 2.5. The finiteness of variance swap prices
is satisfied by (b). Now assume v is defined by (2.19). As before,

dvt( ) = d’Ut —t thj s (220)

M&

Jj=1

i.e.v(T) is a local martingale. Let 2 (x) == >_7_; 3 () dW; and note that condition (d) above

on ﬁ ensures that 0,2 is well-defined. Hence, we can compute

220) <~ [T, ,
on(T) — () "2 3 /tﬂi(T—t)thJ
j=1

_ g/tT{Bf(T)—T A£<>dy}dW3'

T

= ) =M~ [ {ocs) - 0aw)} dy

= (T —t)-2((T-1),

so v(T) is a local martingale. Finally, (; := 04(0) is by construction well defined. O

This theorem allows us to specify ¥ instead of v. We will therefore also refer to ¢ as a “variance
curve model” if it satisfies the conditions of theorem 2.13.

CONCLUSION 2.14 Theorems 2.8 and 2.13 answer (P1) from the introduction.

REMARK 2.15 Despite the introduction of forward rates in terms of fixed-time-to-maturity by
Musiela, it is more common in interest-rate theory to deal with fized maturity objects because the
maturities of underlying market instruments are typically fixed points in time (such as LIBOR
rates and Swaps).b

A wvariance curve, in contrast, is more naturally seen as a fixed time-to-maturity object, in
particular given that the short end of the curve is the instantaneous variance of the log-price of
the stock as seen in definition 2.7."

5In a typical LIBOR rate model, the short rate is not modelled.
"For example, an option on realized variance (such as the call from example 1.3) is not an option on a variance
swap.
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2.2.3 Fitting the Market with Exponential Variance Curve Models

Let ft(:v) be the interest rate forward rate with time-to-maturity « observed at some time t. An
advantage of the HJM-approach for interest-rates is that the current forward rate is given as

t ) d st )
) = o)+ [ (0F0) = an(o)) s+ > | Bt aw:

with HIM-drift a;(z) = Z;l:l e ) Jy 3/ (y) dy so that the initial curve fy can be estimated
from market quotes without imposing additional constraints on the volatility structure ﬂ.

In contrast, our specification of ¥ must remain non-negative, which renders the specification
of the volatility structure dependent on 7.

In the main part of this thesis we will deal with finite-dimensional realizations of 0, where
this is not a concern (because we will write ¢ in terms of a non-negative functional). However,
if we were to work directly with 0, we might consider parameterizing it as

¢ (x) = Do (x)e? @) (2.21)

PROPOSITION 2.16 Equation (2.21) defines a variance curve model W iff tg is in C1 and if W
with Wy = 0 has a representation

dUA)t(IL‘) = 8 wt

d d
D IRAC: Z ) dW (2.22)

Jj=1

l\D\H

for some ~ € L which is C.

One such model is presented in section 3.4.

Wy (T,t)

As we mentioned before, ensuring that v(T) = e is a true martingale is not trivial.

However, if we want to allow arbitrary initial curves and be able to choose the volatility structure
independently from the chosen initial curve, the approach above can be employed.

REMARK 2.17 In [Du04], Dupire discusses a model of the type above for a constant v and a
single driving Brownian motion, i.e. where ¥ is log-normal. His article also contains details on
hedging in such a framework. Also see example 3.10.

Proof of the proposition— Let us first assume that
diby () = dy(z) dt + Z vl (z) dW} .

and that © defined in (2.21) is a variance curve model. This implies that vy is in C'. Using It&’s
formula and assuming 09 = 1 for simplicity, we have

dby(z) = By() dt+2% )dwi | + vt Z% 2| dt .

Let 37 := 94/, which is in C'. Since vy(T) := ©,(T — t) is a local martingale, we must have

() + % Y @)= ajj”t(x) = Oywi(z) .
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On the other hand, if ¢ is defined by (2.21) for a process w satisfying (2.22) and wy = 0, then
another application of It6’s formula shows that ¢ is a variance curve model. ([

If we want to allow arbitrary initial curves and be able to choose the volatility structure
independently from the chosen initial curve, this approach can be employed. Unfortunately, it
does not allow 7; to be zero, hence models such as Heston’s are not covered in this setting. It
also forbids forward variances which are zero due to holidays or suspended trading.

However, we can extend this idea to fit an arbitrary variance curve model to observed market
prices — this will discussed in section 3.4 on page 43.

Fitting the Market vs. Structural Models

Let us briefly comment on our decision to focus mainly on what we will call “structural” models
as opposed to “fitting” models.

We call models with a parsimonious “functional” form (such as stochastic volatility models
or the consistent variance curve models of the next section) “structural”: these models try to
describe the dynamics of the underlying and its volatility using an assumed dynamic (SDE) for
the interaction of the various stochastic factors. In general, such models are given in terms of
low-dimensional homogeneous Markov-processes.

On the other side of the spectrum, we have “fitting” models (chiefly Dupire’s ground-braking
implied local volatility [D96], but also his approach [Du04] cited above), which try to obtain
as much relevant structure and dynamics from the observed market prices as possible. For
example, the dynamical behavior of the stock in an implied local volatility model is completely
determined by the initially observed set of option prices. In interest rates, a generic example is
HJM’s approach, but also Hull/White’s “extended Vasi¢ek” model [HW93].

The latter models provide a powerful pricing tool for structures which are “close” to the
underlying market instruments. They are therefore very well suited for many standard ap-

8 Such models are usually given as non-homogeneous Markov-processes (or even

plications.
non-Markov processes in the case of HJM-models).

However, in particular implied local volatility suffers from a lack of “predictive power”: The
future market data “scenarios” which are predicted by the model can differ widely from what
users would accept as being realistic. This has been reported frequently by practitioners (see,
for example, Overhaus [O05] or Hagan et al. [HKLW02]).

In contrast, while “structural” models will fit less well to today’s observed market data, they
make clearly defined predictions on the future shape of the market. For example, our variance
curve models guarantee that the variance swap price curve is always of a certain shape. In the
same vein, stochastic volatility models such as Heston [H93], and also our variance curve models,
preserve the general shape of the implied volatility surface, because the Markov property of these
models implies that this surface is a function of the (few) state parameters.

This matters if we want to risk-manage products which are not “close” to the calibration
instruments. Consider for example the case of a forward started call spread with payoff

8Note that since Dupire’s local volatility fits perfectly the market of European options, it also perfectly reprices
the variance swaps; see appendix A.1.
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for 0 < Ty < Ty and K7 < K5. At the time of writing, such options are not yet liquidly traded,
so we have to use a financial model to evaluate and hedge them. However, as soon as the “reset
date” T} is reached, the option turns into a standard call spread which is liquidly traded. It is
therefore important that whatever model we use to compute the initial price, it makes reasonable
predictions of the shape of the implied volatility surface (as a measure of option prices) at time
Ty: in particular, the “skew” (i.e.the difference between the implied volatilities with strikes K3
and K>s) needs to be realistic. This is achieved if we use structural models.

REMARK 2.18 The above distinction between “structural” and “fitted” models is superficial. As
remark 2.23 below shows, local volatility models are actually a sub-class of consistent variance
curve models. In section 3.4 we will therefore discuss how to turn a “structural” variance curve
model into a “fitting” model.

2.3 Consistent Variance Curve Functionals

In the previous section, we have discussed variance curve models which were given in terms of
general integrable processes. These have the aforementioned drawbacks: on one hand, it is very
difficult to check whether a general model of the form (2.18) actually stays non-negative (this is
particularly difficult for diffusions with values in Hilbert spaces, cf. equation (2.32) on page 35).

On the other hand, it is not clear how such models can be used in practise. Indeed, consider
the situation in the reality of a trading floor: we do not actually see an infinite number of variance
swap prices (Vo(T'))r>o in the market. Rather, a discrete set of swap prices will be interpolated
by some functional which is parameterized by a finite-dimensional parameter vector.

Hence, we want to focus on variance curves which are given in terms of such finite-dimensionally
parameterized variance curve functionals.

DEFINITION 2.19 (Variance Curve Functional) A Variance Curve Functional is a non-negative
C%2_function G : (z;2) € Z x R>g — Rxq such that fOT G(z;x)dx < oo for all (2,T).
The open subset Z C RY is called the parameter space of G.

Given a functional G, we now have to find a parameter process Z = (Z¢);c(o,00) Such that
o(z) :=G(Zyx), x>0,

forms a variance curve model. To avoid arbitrage, we need to meet the conditions of theo-
rem 2.13. We want to focus on diffusions Z which are strong solutions of an SDE

d
dZy = p(Ze) dt + 07 (Z) AW/ (2.23)
j=1

with locally Lipschitz coefficients v : Z +— R™ and ¢/ : Z+— R™ for j = 1,...,d defined up to a
strictly positive stopping time 7 > 0. The set of coefficients (y, o) which admit a unique strong
solution for all Zy € Z will be denoted by =Z. We do not require that Z is confined to the set Z;
the question whether Z can leave Z is discussed in section 2.3.3 below. To ease notation we
also refer to elements of = as “processes” Z, even though they are actually families of processes
(since they depend on the starting point Zj).

Note that (2.23) allows to define, say, the nth coordinate as “time”, i.e. Z' = t: simply
set fin(z) := 1 and 0% (z) := 0 for j = 1,...,d. This way, a deterministic dependency of the
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coefficients p and ¢ on time can be incorporated in the above formulation (see example 2.23
below and the “fitting models” in section 3.4).

DEFINITION 2.20 (Consistent Parameter Process) A locally Consistent Parameter Process for
(G, 2) is a diffusion process Z € = with explosion time T > 0, such that for all Zy € Z we have
Zine € Z and the family

0(x) = CZippiz) 23>0,

is a variance curve model.”

The pair (G, Z) is then called locally consistent. It is called globally consistent if 7 = oo
for all Zy € Z. We also say that (G, Z) are strongly consistent if v above is a strong variance
curve model.

Once we have determined a consistent pair (G, Z), an associated stock price is defined by choos-
ing a correlation structure between v and the stock price process in form of a Brownian motion B
(see theorem 2.8 and the subsequent remark 2.9). To preserve the Markov property of the joint
process (Z,S), we impose some structure on the choice of B.

2.3.1 Markov Variance Curve Market Models

DEFINITION 2.21 A correlation function is a measurable map p : Z x R>g — [—1,+1] such that
lp(z,8)|l2 =1 for all (z,8) € Z x Rx(.1°

DEFINITION 2.22 (Markov Variance Curve Market Model) Assume (G, Z) is locally consistent
with explosion time T > 0 and that p is a correlation function. Let the p-associated stock price
S = (St)o<t<r be given as the unique solution to the equation

d
ij =G (2, S)dW] = G(4,0) (2.24)
j=1

By definition, the process (Si, Z¢) is then Markovian and we call the triple (G,Z,p) a local
Markov variance curve market model or MVCMM.

It is called global if T = co.

Moreover, it is called strong if (G, Z) is globally consistent and if the variance swap market
model is strong, i.e. if all variance swaps and the stock price are true martingales.

Proof that (2.24) admits a unique strong solution— Let 7 > 0 be the explosion time of Z and
define the local martingales M} := fg«/G(Zt, 0) dW{ until 7. Let u}(x) := zp’ (Zy; x). Equation

(2.24) becomes
d

dSy = ul(S)dM} {t<r}.
=1
Since [Jui(z) — u(y)|| < Qde — 9|, existence and uniqueness up to 7 follow from theorem 7 in
Protter [P04] pg. 253. O

9Strictly speaking, the process Z depends on the starting point Zy, hence we are actually speaking about a
family of processes rather than a single process.

9The norm || - ||2 is the usual L? norm, hence the condition above translates into 1 = 3
all (z,s).

j=1,..., (P (2,8))? for
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REMARK 2.23 (Local Volatility) A “local volatility” such as Dupire’s implied local volatility [DI6]
s also a Markov variance curve market model.
We show a more general result: let Z € =, assume that p is a correlation function and that n

s a suitable “local volatility” function such that

d
dSt
n(St, Zy) (S, Zi) AW} 2.25

St ty &t Z p] t t ( )

7=1
has a unique strong strictly positive solution S which is a true martingale up to all finite T (note
that as above, n can depend on time by imposing, for example, Z}' =1t).

LetY = (YY ..., Y™):=(S,Z',...,Z™). This process uniquely solves

d
dY, = [(Yy) dt + Y & (Y,) dW

j=1
with fi(z,s) = (0, p1(2),. .., um(2)) and
sn(s, 20 (5,2) - s1(s,2)p(s,2)
I I C I (&
o (2) om(2)

By construction Y € Z. The variance curve functional for (2.25) is given by
G(g, JJ) =E [ H(Sw, Zx)z ‘ S() = 20; Zg = (21, ey 2m)] .

Now, it is just a matter of notation to see that

d d
VG(Yi0) Y07 (S Z) dW] = Syn(Se, Z0) Y 0 (Se, Z) AW] = dS, .
7j=1 7=1

2.3.2 HJM-Conditions for Consistent Parameter Processes

We can now prove the following theorem, which is closely related to proposition 3.1.1 in [FO1].
It paves the way to answer problem (P2) (also note theorem 5.20 in section 5.3.1 which provides
a related result for “entropy swaps”).

THEOREM 2.24 (HJM-condition for Variance Curve Functionals) A process Z € E is locally con-
sistent with (G, Z) if and only if for each Zy € Z, the process Z stays in Z and

0,G(z;2) = p(z) 0,G(z;x) + %O’Q(Z) 0..G(z;x) (2.26)

holds on Z x Rx>g.
Moreover, Z is strongly consistent if and only if additionally 7 = oo and G(Zy;T) =
E[G(Zr;0)] holds for all finite T.



CHAPTER 2. CONSISTENT VARIANCE CURVE MODELS 32

The above equation (2.26) is short-cut notation for

0,G(z;x) = Zui(Z)azlG(z,x)
i=1
L (R
+ 52 Zag(z)ai(z) 022,G(2;x)
i,k=1 7=1

Proof — First assume that Z is locally consistent with G. Then () := G(Z; x) is a variance
curve model and J
. 1 j j
diy = (u 0.G + 502 8ZZG> dt + Zl o’ 0,G dW}
J:
shows that 1
0:G(Zy;x) = w(Zy) 0,G(Zy; ) + 502(Zt) 0..G(Zy; x)

on t < 7 almost surely by theorem 2.13. In particular, this condition has to hold for each Zy € Z,
which shows that indeed (2.26) must hold.

Now assume on the other hand that (2.26) holds. Using It6 and (2.26) it is clear that
v (T) := G(Zy; T —t) is a local martingale up to 7 for all T with

d m
doi(T) = BL(T) AW}, BI(T) = 0l(Z)0.,G(Z:T —t) € LR . (2.27)

j=1 i=1

This proves the theorem for the local case. The case of a strong variance curve is obvious. [J

Theorem 2.24 gives us the required conditions for problem (P2) when a pair (G, Z) is con-
sistent. However, it leaves the question open whether a process Z given by a pair (u, o) leaves
Z at some stage or not. This will be treated in theorem 2.26 in the following section.

2.3.3 Extensions to Manifolds: When does Z stay in Z ?

In the following section, we want to discuss conditions on when Z stays inside the domain Z
of G(-; ). Since the methods we want to employ require a notion of differentiability, we will now
assume that Z is a regular sub-manifold with boundary. The reason why we include the case with
boundary is that this situation arises in many examples, notably the “linearly mean-reverting”
models (such as Heston’s) which are discussed in chapter 3.

DEFINITION 2.25 (Invariant manifold) Let (u,0) € Z. A regular sub-manifold with boundary
Z C RY, is called locally invariant for Z if for any starting point Zy € Z, there exists a strictly
positive stopping time n such that Zianr € Z fort <.

We call Z globally invariant or just invariant if we can set n = oco.

Recall that if Z is a d-dimensional regular sub-manifold with boundary 02, then 7, Z denotes
the tangent space of Z in an interior point x € Z. By definition, the boundary 0Z of Z is
either empty or a (d — 1)-dimensional manifold, and for a point z € 0Z, its (d — 1)-dimensional
tangent space with respect to 0Z is denoted by 7,0Z. For any regular sub-manifold, its closure
is denoted by Z, and contains its boundary (which might be empty).
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For any point z € 0Z, we can find a smooth map ¢ : U — V from an open set U into
a relatively open set V C RI~1 x R>0, which generates the “inward pointing” tangent space
(T.2)>0 of M in z.'1 We will now follow Bjérk et al. [BC99] and derive a condition under
which Z will stay in a regular manifold with boundary Z.

Assume o € C1(Z), and define the vector

Y(z) := : (2.28)

with 3;(z) given as the sum Z’;Zl((‘)zaj)aj(z), where we define

i

(0:07)07 (2) ==Y (0:,07)(2)0)(2) . (2.29)
/=1

THEOREM 2.26 Assume that Z € R™ is a d-dimensional reqular sub-manifold with boundary
and let Z € = with coefficients (u, o) and o € C1.

Then, Z is locally invariant for (u,o) if

wz) - $5() € T2 }

ol(z) e T.Z (230)

for all z € intZ.
Moreover, if Z is closed in the relative topology, then it is globally invariant if additionally

u(z) = 5 3(2) € (T.2)>0 }

0l (z) € T.OZ (2.31)

for all z € 0Z.12

Proof — The proof is an application of Stratonovich-calculus. See also Filipovic/Teichmann [FT04]
theorem 1.2 or Teichmann [T05] pg. 19 for a similar statement.

Step 1: We first look at the general case of a sub-manifold, i.e. assume Zy € intZ. Then,
there exists an open set Uy (in the relative topology) such that Zy € Uy C Z. The solution Y
to a Stratonovich-SDE

dY, = p(Y,) dt + <(Yy) o dW,

starting at Yy = Zp will stay in Z until it leaves Uy, if and only if
n(z) € T.2
<(2) e 1,2

for all z € Uy: This follows since Stratonovich calculus obeys the same rules as the standard

calculus.!® Also, the exit time 7 from Uy is strictly positive, so Z is locally invariant for Y.
From that, it is also clear why the process may only stay locally in Z: If the sub-manifold is

open in the relative topology, Y can approach the boundary in a sequence of steps and so finally

1See Hirsch [H91] for an introduction into manifolds. Our notation follows Teichmann [T05].
12Note that 92 might be empty.
3For an introduction into this topic, see for example Roger/Williams [RWO00] chapter V.
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leave the manifold via its boundary (think of the circle around the open unit ball). Indeed, it
can be shown that it can only leave the manifold at a boundary.

Step 2: Now consider the case where Z is closed in the relative topology, i.e.that 02 C Z.
By standard calculus, the condition 7(z) € (7.Z)>¢ ensures that the pure drift term stays on
the manifold. The second condition ¢(z) € 7,0Z on the other hand ensures that the diffusion
term does not drive the solution out of the (d — 1)-dimensional manifold 0Z, just as above, so
the diffusion Y cannot leave Z. This situation is illustrated in figure 2.1 below.

rg‘\z

Figure 2.1: The tangent spaces (7,2)>¢ and 7,0Z for a point z € 0Z.

Step 3: The previous remarks can now be translated to our case using the transition between
Stratonovich and It6 integral by way of the general formula

M o dW? = M7 dW’ — %d(Mj, W)

for some semi-martingale M.
Leti=1,...,mand j =1,...,d. As before, o is the volatility coefficient of Z* with respect

to the jth Brownian motion. We have

dol(Z,) % i(@mi)(Z) dZf + (---) dt

=1
m d

= Z(aziaﬁ)(Z)Zaf(Zt)thk + (-1 dt
=1 k=1

and consequently

m . d
Aok W = 3ol o)z Y otz)awE, Wi

=1 k=1
= > (@0 @)al () at
(=1
(2.29), (8,07)07 dt .

By defining ¥ as in (2.28) we get

d
1 . :
dZt = (/,L(Zt) — 2Z(Zt)) dt + E O'J(Zt) o) th] y
j=1



CHAPTER 2. CONSISTENT VARIANCE CURVE MODELS 35
to which step 1 and 2 of the proof apply. O

We are hence able to answer (P2) satisfactory in the case where Z is a sub-manifold:

CONCLUSION 2.27 (Solution to problem (P2)) To check whether Z and G are consistent, we
apply theorem 2.24 to find out whether the process is consistent on Z, and theorem 2.26 to
determine whether it also stays (at least locally) in Z.

2.4 Variance Curve Models in Hilbert Spaces

We will now focus on problem (P3): Given ¥ now as a solution of a general SDE of the
form (2.18), and a curve functional G such that G(Z) is a sub-manifold of a Hilbert-space H,
under which conditions on the coefficients of © can we find a consistent parameter process Z
such that

0y =G(Zy) ?

(We now drop the z-argument since we understand ¢, and G(Z;) in this section as elements of a
function space.) Note that such a representation is also an efficient way to ensure non-negativity
of the process 9.

To be able to approach this question, we have to impose some regularity on the possible
curves of 0. Indeed, we will employ the theory of stochastic differential equations in Hilbert
spaces, the standard reference on which is daPrato/Zabcyk [PZ92]; also see Teichmann [T05].
We will closely follow Bjork/Svensson [BS01], Filipovic/Teichmann [FT04] and Teichmann [T05].

We remain on the space W = (Q, F, P, F) which supports an extremal d-dimensional Brow-
nian motion W. Additionally we assume that we are also given a Hilbert-space H, which will
contain our forward variance curves.'*

In H, we assume 0 is given as a solution to a stochastic differential equation of the type

d
diy = Opbydt + Y b (6r) dW] (2.32)
j=1

with locally Lipschitz vector fields 8',...,3% : U C H — H where U is an open set. A (mild)
solution!® of such an equation typically only exists up to a strictly positive stopping explosion
time 7, hence we focus on questions of local consistency. The operator 9, : dom(9,) C H — H is
the generator of the strongly continuous semigroup (7)+>0 of shift operators (1;0)(z) := v(z+1);
see da Prato/Zabcyk [PZ92] for details.

ASSUMPTION 4 The set G := G(Z) C 'H is a sub-manifold with boundary 0G.'6

DEFINITION 2.28 (Locally Consistency and FDR) We say © = (0)o<i<n ts locally consistent
with G if there exist a locally consistent (u, o) € E for G with explosion time 7 > 0 such that

i = G(Z,)

MFor examples of suitable Hilbert-spaces, see Filipovic [F01].
5For concepts of solutions for equations in Hilbert-spaces, see da Prato/Zabcyk [PZ92] or Teichmann [T05].
1The boundary is finite-dimensional by construction.
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for allt < nAT. We call the pair (G,Z) a finite dimensional representation or FDR of the

variance curve .

Let us define the Stratonovic drift of v,
1 d
0 o\ g
b (0) —5 E_ (DY) (0) b ()

where (Db7)(%) denotes the Frechet-derivative of & along ©. Note that the drift 5° is only
well-defined for © € dom(9,).

THEOREM 2.29 The process ¥ = (0¢)o<i<n with 09 € G is locally consistent with G if and only if
(a) G C dom(0,).
(b) For all v € G\ 0G and for j =0,...,d,
V(0) € ToG . (2.33)
(the tangent space TyG in 0 = G(z) is given by Img 0.G(z)).

(c) For all © € 0G,
V(0) € (ToG)so and V(9) € T;0G (2.34)

forj=1,...,d."7

For a proof, see Filipovic/Teichmann [FT04] or theorem 13 in [T05]. We also obtain:

COROLLARY 2.30 If 0 is locally consistent with G and if G is invertible on Z, then the parameter
process (u, o) specified by
ol(2) = (8:G)(2)"! ¥(G(2))

forj=1,...,d and
d
p(z) = (9:G)(2) " V(G(2)) + > (9:07)(2) 0/ (2) .
7j=1

is in 2 and locally consistent with G.

CoNcLUSION 2.31 (Local solution to problem (P3)) At least locally, Theorem 2.29 solves prob-
lem (P3): a variance curve model admits an FDR (G, Z) if and only if (2.33) and (2.33) are
satisfied. If G is invertible, the parameter process Z is given in Corollary 2.30.

1"We used (T5G)>0 to denote the inward pointing tangent-space of G in the boundary point .



Chapter 3

Examples

In this chapter, we will apply the theory developed in the previous chapter to some examples
of variance curve models. We will mainly focus on exponential-polynomial variance curves, but
also discuss a few other approaches.

The main purpose of this section is to show how theorem 2.24 restricts the possible choices of
parameter processes for a given functional G. According to theorem 2.24, the coefficients (u, o)
of every consistent process Z € = must satisfy (2.26), i.e

0.G(z;x) = Zﬂi(z)azZG(Z,x)
=1
m d
+ %Z Z‘%j(z)ai(z) 022G (25 7) (3.1)
k=1 \j=1

Hence, if G is given, we need to find (i, o) € Z such that (3.1) is satisfied.

3.1 Exponential-Polynomial Variance Curve Models

DEFINITION 3.1 The family of Exponential-Polynomial Curve Functional is parameterized by

2= (21,320} Zra1y -« -5 2m) € Rog” X R™™" and given as
T
z) =Y pi(zw)e (3.2)
i=1

where p; are polynomials of the form p;(z,x) = Zj 0 @ij(2)z? with coefficients a;; such that
p; >0 M-as. W.lg. we can assume that deg(p’) > deg(p'™1).!

(Also compare Bjork/Svensson [BS01] and Filipovic [FO1].)
We assume that any parameter process has Z¢ # ZJ for i # j, since otherwise we can just
rewrite (3.2) accordingly. Also note that fOTG(z; x)dr < oo for all T' < oo.

LEMMA 3.2 Let Z € = be a parameter process consistent with an exponential-polynomial variance
curve functional.
Then, the first r coordinates Z',...,Z" are constant.

1We denote by deg(p) the degree of a polynomial p.

37
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Proof — We have

0.G(z,x) = —z Zpi(z; x)e FiT 4 Z Oppi(z;x)e* (3.3)
i=1 i=1
0,.G(z,x) = —pr(z;x)ze 1<, + Z 0,,.pi(z; x)e” " (3.4)
i=1
8§kaG(z,CE> = pk(z;m):c2efzkx1k§r — Oy pi(z5x)re” 1 ey (3.5)
+ Z azkzkpi(z; x)e =T (3.6)
i=1

The terms 92, G(z,x) with k < r are the only terms in (3.1) which involve polynomials of
degree deg(p;) + 2 as factors in front of the exponentials e”**. Since we choose the z; distinct,

and because neither u nor o depends on x, this implies that

for k < r, which implies that the vector o, must vanish. In other words, the states z; for k < r
cannot be random.

Next, we use (3.4) and find with the same reasoning (now applied to the polynomials of
degree deg(p;) + 1) that p; = 0 for i < r, so Z must be a constant. O

We will now present two particular exponential-polynomial curve functionals. In the light of
lemma 3.2, we will keep the exponentials constant but investigate the possible dynamics of the
remaining parameters.

EXAMPLE 3.3 (Linearly Mean-Reverting Variance Curve Models) The Functional
G(z;x) =22+ (21 — z2)e” ™" .

with z € Z :=Rx> X Rxq is consistent with Z € Z if p1(z) = k(22 — 21) and p2(z) =0 (that is,
Z% must be a martingale). The volatility parameters can be freely specified, as long as Z' and
Z?% remain non-negative.

We call such a model a linearly mean-reverting variance curve model.

Proof — Theorem 2.24 with equation (2.26) implies that we have to match

RT —RT

—r(21 = z2)e™™ = p(2)e™™ + pa(2) (1 — 7).
Since the left hand side has no term constant in z, we must have us(z) = 0 (i.e. Z2 is a martin-

gale), and then p;(z) = k(22 — 21). O

A popular parametrization is o9 = 0 and o1(21) = vy/z1 for some v > 0, which has been
introduced by Heston [H93]: Z! is then the square of the short-volatility of the associated stock
price process. Another possible choice for the parameters in example 3.3 is

_ [ wlz2—2) N RZ )
wlz) = ( 0 ) o) = < np; npz2 )
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with constants o € [1,2], v,n € Rsg, p € (—=1,0] and p = /1 —p2. In this example, the
mean-reversion level z, is a geometric Brownian motion (with the intuitive drawback that it can

become very large).

ExaMPLE 3.4 (Fitting Heston to the market) In the light of the discussion in Section 2.2.3, let
us show an approach here to fit a Heston-model to an observed variance swap curve while re-
taining computational tractability.

To this end, consider Heston’s model [H93] with a time-dependent mean-reversion level,

Az}t = k(0(Z2) - Z})dt + v/ Z} dW}
dz? = dt
with the associated stock price process given by a constant correlation p. (Note that Z} = ZZ+t.)

Assume now that we observe a market variance curve iig € C*[Rx¢] and let 0(x) := rig(x) +
Oztio(z). If 0(x) > 0 (such that Z} > 0), then Z is fits the market in the sense that

E[Z;| Zo = (u0(0),0)] = dig(x) .

The characteristic function of the logarithm of the stock price in this model can be computed
using standard methods; see Bermudez et al. [BBFJLOO06] for details.

The next functional is a generalization of the linearly mean-reverting case above. It is akin to
Svensson’s model for interest rate forward curves.

ExAMPLE 3.5 (Double Mean-Reverting Variance Curve Models) Let ¢,k > 0 constant and let
z = (21,22, 23) € R>g x R%. The Curve Functional

G(z;x) =234+ (21 — 23)e” " + (22 — 23) { R (T e n o) (3.7)

Kx e " (k

Il
9]
~

is consistent with any parameter process (u, o) such that

Az} = wk(Z? - Z})dt+ o1(Zy) dW;
dZ} = o(Z} — Z2)dt + o9(Z;) dW;
de’ = o03(Z) dW,

and is called a double mean-reverting variance curve model.
Proof — First let kK = ¢. Then,

0:G(z,x) = {—k(21 — 23 + kw(22 — 23)) + k(22 — 23)} "
and

0,,G(z,z) = e
0.,G(z,2) = Kre ™

0:,,G(z,2) = 1—e "™+ Krre ™

This yields 3 = 0. The remaining equation reads

—k(z1 — 22) — K*@(22 — 23) = p1(2) + Kapo(2)
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such that p?(2) = k(23 — 22) and p!(2) = k(22 — 21).

Now assume & # c. Let v := =. Then,

—RZ

G(z;x) =23+ (21 — 23 — (22 — 23))e + (29 — 2z3)e”

and therefore

0.G(z,x) = —k{z1 —23—7(22—23)}e ™ —c(22 — 23)ve”
0.,G(z,x) = e ™
0.,G(z,x) —ye " 4 e
0.,,G(z,2) = 1+ (y—1)e "™ —ye .
Hence, once more pz = 0. Furthermore po = ¢(z3 — 22) and finally p = k(23 — 21). O

This turns out to be a flexible and applicable variance curve functional. Figure 3.1 shows a

few typical shapes of the variance swap strike term structure, i.e. of the curve T' — \/ fOTG (z;2)dx/T
(this is the market standard to quote a variance swap). See also figure 6.3 on page 86 which
illustrates the impact of changing the parameters on the shape of the curve.

Double mean-reverting curves
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Volatility levels

Figure 3.1: Various shapes of the variance swap prices given for various parameterizations of the func-

tional (3.7). The graph shows “variance swap volatilites” 4/ fOTG(z; x)dz/T, cf. (1.2).

At the time of writing, the variance functional (3.7) fits the variance swap market of major
indices well, so this kind of double mean-reverting model is a good candidate for a variance
curve model (a similar model has been proposed by Duffie et al. [DPS00] who use 01(2) = \/z1
and o9(z) = \/z2 with a particular sparse correlation structure).

We will discuss the implementation of a three-model with all technical details in chapter 6.

EXAMPLE 3.6 The one-factor model

d¢ = K(0O(t) — &) dt + v/ dW,
dot) = c(m—0(t))dt
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is also consistent with the variance swap curve functional (3.7). In such a “Heston model
with time-dependent mean-reversion speed”, European options written on the stock can still be
evaluated relatively efficient using Fourier-inversion (there is no need to solve a Ricatti equation).

See Bermudez et al. [BBFJLOO06] for details.

3.2 Exponential Curves

As in (3.2), let (pi)i=1,..r be polynomials and let
T
g(z;x) = Zpi(z; x)e 5
i=1

with 2 = (21,. .., 2} Zr 41, - -, 2m) € Rso” X R™77. Set
G(z;z) :=exp(g(z; 7)) - (3.8)

Using theorem 2.24, a necessary condition for a consistent pair is

1
Oag(2) = p(2) 0:9(2;2) + 50°(2) {(029(2;2))" + O=z9(22) } (3.9)
where (0,g(z;7))? = > i=1029(2:7)0:;9(2;x). As a result, we obtain the following lemma,?
whose proof is omitted because it is very similar to the proof of lemma 3.2.
LEMMA 3.7 If Z is a consistent parameter process for G, then its coordinates Z',...,Z™ are

constant. Moreover, there must be at least one pair i # j such that Z' = 277, otherwise Z is

entirely constant.

As an immediate consequence, we have

EXAMPLE 3.8 (Exponential Mean-Reverting Models) Let

z3

1— —2KT
=)

g(z;2) = 22+ (21 — z0)e” ™ +

with (z1,292,23) € 2 :=R xR x Ryg.

Then, p1(z) = k(22 — 21), 01(2) = /23 and pg = p3 = o9 = 03 = 0, i.e. the only consistent
factor model is the exponential Ornstein-Uhlenbeck stochastic volatility model discussed in depth
by Fouque et al. in [FPS00].

Proof