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Chapter 1

Introduction

Ever since Black, Scholes and Merton published their famous articles [BS73] and [M73], huge
markets of financial derivatives on a wide range of underlying economic quantities have devel-
oped. One of the most visible markets of underlyings is surely the equity market with index
level and share price quotes being a common part of today’s news programmes. Upon it rest
deep exchange-based markets of “vanilla” derivatives on indices and single stocks.

This development of course changes the way over-the-counter products (those which are
agreed upon on a case-by-case basis between the counter-parties) are evaluated and risk-managed.
While Black and Scholes (BS) used only the underlying stock price and the bond to hedge a
derivative in their model,1 this cannot be justified anymore: their model is not able to capture
what is today known as the “volatility skew”, or “volatility smile”, of the implied volatility of
traded vanilla options. The root of the discrepancy is that volatility is not, as assumed in BS’
model, a deterministic quantity. Rather, it is by itself stochastic.

The stochastic nature of the instantaneous variance of the stock price process is particular
important if we want to price and hedge heavily volatility-dependent exotic options such as
options on realized variance or cliquet-type products.2 Such products cannot be priced correctly
in the BS-model since their very risk lies in the movement of volatility (or variance, for that
matter) itself.

Beyond Black-Scholes

There have been many approaches to remedy this problem: the most pragmatic idea is to infer
an implied risk-neutral distribution from the observed market prices. To this end, Dupire [D96]
has completely solved the problem of finding a one-factor diffusion which reprices a continuum
of market prices. His implied local volatility is today a standard tool for evaluating exotic
derivatives.

However, the resulting stock price dynamics are not overly realistic since the resulting dif-
fusion is usually highly inhomogeneous in time. This implies that the model makes predictions
about the future which are not matched by past market experience. Most notably, the implied
volatility smile inside the model flattens out over time which is in contrast to the persistent
presence of this phenomenon in reality. This in turn means that the dynamical behavior of the
liquid options is not captured very well.

1In fact, the model is due to Samuelson [S65], but it is common to call it “Black&Scholes model”.
2See section 1.1.2 for example payoffs.
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Conceptually quite different from this fitting approach are stochastic volatility models. In
these models, a parsimonious description of the dynamics of both the stock price and its in-
stantaneous variance is the starting point. Such a model is based on “structural” assumptions
on the underlying stock price. For example, Heston’s popular model [H93] assumes that the
instantaneous variance of the stock price is a square-root diffusion whose increments are cor-
related to the increments of the return of the stock price. Other popular stochastic volatility
models are Hagan et al. [HKLW02], Schoebel/Zhu [SZ99] and Fouque et al. [FPS00] to name
but a few. In addition, there are also models which incorporate jump processes (see for example
Merton [M76], Carr et al. [CCM98]) or mixtures of both concepts such as Bates [B96]. A good
reference on models based on Lévy processes is Cont/Tankov [CT03].

Most of these structural models will lead per se to incomplete market models if only the stock
and the cash bond are considered as tradable instruments. As a result, there is no unique fair
price for most derivatives. To alleviate this problem in continuous models,3 we have to extend the
range of tradable instruments. Broadly speaking, each additional source of randomness requires
an additional traded instrument to be able to hedge the resulting risk. This is called “completion
of the market” (see also Davis [Da04]). However, it not clear which traded instruments we have
to choose to complete our market.

Indeed, if we are to use the stock price together with a range of liquid reference options as
hedging instruments, a more natural approach would be to model directly the evolution of the
stock price and these reference options simultaneously. Such a framework has the advantage
that the options are an integral part of the model and that the model yields hedging strategies
directly in terms of the traded reference instruments.

The most prominent approach has been to model call and put prices via their implied volatil-
ities. This has been undertaken by Brace et al. [BGKW01], Cont et al. [CFD02], Fengler
et al. [FHM03] and Haffner [H04], among others. However, to our knowledge, none of theses
stochastic implied volatility models is able to ensure the absence of arbitrage situations (such as
negative prices for butterfly trades) throughout the life of the model.

For this reason, some authors have focused on the term-structure of implied volatilities for
just one fixed cash strike. This approach has been pioneered by Schönbucher [S99] and has
recently been put into a more general framework by Schweizer/Wissel [SW05] who also consider
power-type payoffs. This approach is attractive for pricing strike-dependent options such as
compound options. However, the dependency on a fixed cash strike also implies that if the
market moves, the model’s fixed strike may drift too far out of the money to be suitable for
hedging purposes. This is of particular concern if we want to price and hedge mainly volatility-
dependent products such as options on realized variance or cliquets.

Consistent Modelling

In this thesis we propose to use variance swaps as reference instruments. Variance swaps essen-
tially promise the payment of the realized variance of the returns of the underlying to the holder:
their price is the market’s expectation of the realized variance of the returns of the stock up to
the maturity of the contract. As such, variance swaps are inherently strike-independent and a
natural candidate for volatility-hedging of volatility products: for contracts such as calls and
puts on realized variance, they are the equivalent of the discounted forward on the underlying.

3Models with random jumps can generally not be completed using a finite number of additional instruments.
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Before we take on the modeling of time-homogeneous Markov-models for variance swap
markets (which have the advantage of preserving their principle structural properties over time),
we first develop a theoretical framework of general variance swap term structure models. Indeed,
we closely follow the ideas of Heath-Jarrow-Morton (HJM) [HJM92] for interest rates: the term
structure of variance swaps will play the same role as the role played by term structure of
zero bonds in HJM’s framework. That means that instead of developing a model for the short
variance directly (which is the subject of stochastic volatility models), we describe the dynamics
of the entire implied variance swap price curve. From there, we construct compatible stock price
processes and their corresponding implied short variance dynamics.

In a second step, we specialize the general framework to models which are driven by a
finite-dimensional Markov process. The idea behind this type of models is that we first specify
a functional form for the implied variance swap price curve and then drive the parameters of
this curve in an arbitrage-free “consistent” way. (The notion of “consistency” originates again
from the interest-rate world, where it was discussed first by Björk/Christenssen [BC99], and
Björk/Svensson [BS01].) We will also discuss how a sensible instantaneous correlation structure
between stock and variance curve can be implemented such that the resulting vector of stock
price and curve parameters retains its Markov-property. These finite-dimensional processes are
easier to handle and provide a “structural” access to a variance curve model. However, since it
might be necessary to provide a perfect fit to the market under certain circumstances, we also
show how we can move from a “structural” variance curve model to a “fitting”-type model, such
as Dupire’s stochastic volatility model [Du04].

Hedging

All our models will be developed directly under a local martingale measure. This approach
ensures that there cannot be arbitrage in the model – but a second important question remains:
the question of completeness. Having argued that variance swaps are a suitable hedging instru-
ment in addition to the stock, we shall also provide the theoretical framework to assess when a
variance curve model (or, in fact, any general Markov-driven model) generates a complete mar-
ket. To this end, we show that if we only consider payoffs which are measurable with respect to
the information generated by the traded assets (in opposition to the information generated by
the background driving Brownian motion), then a financial model often allows the replication
of a payoff, even if the volatility matrix of the tradable instruments with respect to the driving
Brownian motion is singular: if a value function of an exotic product can be differentiated at
least once in the parameter of the market instruments, then these derivatives provide as expected
the desired hedging ratios. We will show that if the value function for each non-negative smooth
payoff function whose derivatives have compact support is always continuously differentiable,
then the entire market is shown to be complete. We will show that this is the case, for example,
if the coefficients of the diffusion which drive the market instruments are continuously differen-
tiable with locally Lipschitz derivatives. These ideas are put to use to obtain specific results in
the context of variance swap curve models, where we need to impose an additional invertibility
criterion on the variance curve functional in order to be able to back out the driving Markov
factors by observing only a finite number of variance swaps. We also discuss briefly aspects of
pricing if the asset in a market is a strict local martingale.

These results are all of theoretical nature. In practise, we cannot expect our model to fit
perfectly. Indeed, a model will have to be calibrated to observed liquid option prices and the
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parameters which we obtain from a daily re-calibration will not be constant, as assumed by
the model. Since the model itself does not provide a concept of hedging parameter-risk, it is
common practise to perform “parameter-hedging”: we are trying to find a portfolio of traded
options such that our overall position is (reasonably) insensitive to changes in the parameters.

We will put this idea of parameter-hedging into a theoretical framework and will also present
a new quick and efficient algorithm to obtain a “cheapest” portfolio of liquid options which both
satisfies the desired accuracy of the parameter-hedge and which also takes into account real-life
constraints such as transaction costs and transaction limits.

In a second part, we will then discuss the impact of the practice of re-calibration to the
“meta-model” of the institution, in particular the question whether the real-life price processes
which are the result of this recalibration remain local martingales. We will show that this is for
example not the case if the speed of mean-reversion or the product of “volatility of variance”
and “correlation” in Heston’s model are not kept constant. Similar results are shown for other
mean-reversion type models.

In the course of the discussion we also introduce what we will call “entropy swaps”. They
are closely related to another product, called “gamma swaps” or “weighted variance swaps”.
Appendix A.1.2 is devoted to the latter structures.

Practical Implementation

The third part of this thesis is the application of the first two parts: we discuss the implemen-
tation of a double mean-reverting variance curve model. It is shown that the proposed model is
well-defined and that the associated stock price process is a true martingale. We then proceed
and discuss a Monte-Carlo implementation which allows efficient evaluation of exotic products.

The resulting engine is finally used to calibrate the model in a multi-phase calibration routine.
Even though the routine is based on Monte-Carlo, it is still relatively fast and yields good results
for most major indices. We also employ efficient algorithms to detect arbitrage in European
option markets and show how market data which violate arbitrage-conditions can be fixed.

Outline

This thesis is split into three consecutive parts: the first part is concerned with the development
of variance swap curve models, the second part covers theoretical and practical issues of hedging
and the third part discusses the implementation of a four-factor variance curve model.

Part I: Consistent Modeling

In section 2.2, we start by introducing general HJM-type variance curve models. We discuss
basic properties and derive a Musiela-type parametrization. This approach has been introduced
in [B06b]. We show that we can always construct an associated stock price which is at least a
local martingale and mention a convenient method to determine whether it is a true martingale.
The difference between fitting and structural models is also discussed.

In section 2.3, the framework is specialized to models where the variance curve is driven by
a finite-dimensional homogeneous Markov-process: we develop the notion of a consistent pair
(G,Z) of a variance curve functional G and a parameter process Z which drives this functional
such that the resulting variance swap prices are local martingales. This is the fundamental
idea of a Markov variance curve market model (it is also shown in remark 2.23 that implied
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local volatility can in fact be modeled within our framework). In section 2.4, we apply results
from Björk/Christenssen [BC99], and Björk/Svensson [BS01] for the interest rate world and
investigate when a Hilbert-space valued variance curve can be represented by a finite-dimensional
realization.

Section 3 is devoted to examples: we present mean-reverting curve functionals (which lead
to Heston-type models), double mean-reverting functionals (based upon which we develop a
model in chapter 6) and other curve functionals which appear in the literature. We discuss two
approaches which allow to turn a structural model into a fitting model in section 3.4.

Part II: Hedging

This part is divided into a first section on theory of complete markets and a second section
which is concerned with the practise of parameter-hedging.

We start in section 4.1 by introducing the products we aim to replicate. Following the ap-
proach in [BT06], we then consider a general setting of a Markov-driven complete market in
which we relax various standard assumptions in the literature (on the cost of stronger regu-
larity assumptions). In particular, we will show that as long as the model “weakly preserves
smoothness”, the vector of traded instruments (with potentially an additional processes of finite
variation) is extremal on its filtration, even if the volatility matrix is singular. This situa-
tion is not covered in most of the literature. To “preserve smoothness weakly” means that all
non-negative smooth payout functions with compact support have value functions which are
continuously differentiable in the price levels of the traded instruments. We point out that this
holds for a diffusion, for example, if its drift and volatility coefficients are locally Lipschitz and
continuously differentiable with locally Lipschitz derivatives.

The finding that such a condition is sufficient for market completeness is as important as it is
intuitive: it shows that if we only consider payoffs which depend on the information generated by
the observable tradable instruments (as opposed to the unobservable driving background Brow-
nian motion), then we can replicate such payoffs with the tradable instruments as long as they
are mildly well-behaved as specified above. Essentially, the result is that “delta hedging works”
if the value function of a payoff is differentiable in the spot levels of the tradable instruments.

All this is then put into the framework of our variance swap curve models in section 4.2.3:
an additional complication stems from the availability of an infinite number of variance swaps.
We will give sufficient conditions under which it is possible to make use of only a finite number
of variance swaps to hedge any exotic payoff. We also show how “variance swap deltas” can be
computed in Markovian models.

We turn to practical issues in chapter 5: there, we will introduce the concepts of “calibra-
tion”, “recalibration” and “parameter-hedging”. We will put these ideas into a mathematical
framework and will then discuss in section 7.3 an efficient algorithm which allows selecting a
hedging portfolio from a large number of traded instruments under constraints. This algorithm,
and the subsequent generation of compatible transition kernels (appendix D), has been presented
in [B06a].

Afterwards, we turn to the theoretical implications of the practise of parameter-hedging:
in section 5.3, we show that some of the parameters of models such as Heston or other mean-
reverting models cannot be recalibrated if we want to avoid “dynamic arbitrage”. This has also
been highlighted in [B06b]. Additionally, we introduce in section 5.3.1 “entropy swaps” which
allow us to extend the results for Heston’s model. Appendix A.1.2 discusses a closely related
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product, called “gamma swaps”. These products are discussed in more detail in [BBFJLO06].

Part III: Practical Implementation

This part of the thesis shows how a Markov variance curve market model can be implemented.
We present the four-factor model which provided good fits to observed market data and

discuss its mathematical properties in section 6.1.1: we show that its SDE has a unique solution
and that the stock price is a true martingale. The following section, 6.2, is then devoted to the
implementation of an efficient unbiased Monte-Carlo Milstein scheme which can be used to price
exotic payoffs. We also show how European options can be priced particularly efficiently. This
extends the discussion of this model in [BBFJLO06].

These pricing methods are then used to calibrate the model. The calibration is performed in
several steps: first, the market data of European options is checked for arbitrage and, if necessary,
corrected (we present efficient algorithms for this purpose). In a next step, we calibrate the
states of the model from the observed variance swaps prices. The remaining parameters are
then calibrated using the European option prices.

We present example calibrations and discuss the behavior of the model in a few applications
before we conclude in section 8.

1.1 Basic Assumptions

Since we aim to develop a methodology to price and hedge strongly volatility-dependent prod-
ucts, we choose to simplify the situation by assuming that the prevailing interest rates are zero
and that the stock has a constant forward of 1. It is shown in appendix A.2 that this simpli-
fication is essentially the same as assuming that the interest rates and the forward, including
potential proportional dividends, are deterministic.

Moreover, we will assume:

Assumption 1 The stock price process is continuous.

1.1.1 Variance Swaps

A zero mean variance swap with maturity T is a contract which pays out the realized variance
of the logarithmic total returns up to T in exchange for a fixed strike (we can assume without
loss of generality that this strike is zero).

The annualized realized variance of a stock price process S for the period [0, T ] with business
days 0 = t0 < . . . < tn = T is usually defined as

d

n

n∑

i=1

(
log

Sti

Sti−1

)2

.

The constant d denotes the number of trading days per year and is usually fixed to 252 such
that d/n ≈ 1/T . An example term sheet of a variance swap can be found in appendix B.4 A
standard result (e.g. Protter [P04], pg. 66) gives that

〈log S〉T = lim
n↑∞

n∑

i=1

(
log

Stni

Stni−1

)2

, (1.1)

4In the presence of dividends, the returns of the stock are adjusted accordingly to eliminate the effect of the

dividends; see appendix A.2.
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where the limit is taken over a fixed sequence of refining subdivisions (0 = tn0 < · · · < tnn = T ).5

To ease the modeling of variance, we will ignore the deterministic scaling factor 1/T and we will
assume that (1.1) holds. This approximation works very well for variance swaps, but care should
be taken in practise if we price short dated non-linear payoffs on realized variance, cf. remark 7.26
on page 125. See also Barndorff-Nielsen et al. [BNGJPS04] for a discussion on the error of this
approximation.

Assumption 2 A variance swap with maturity T pays the realized quadratic variation 〈log S〉T
to the holder.

A price at time t of a variance swap with maturity T < ∞ will be denoted by Vt(T ). We set
Vt(T ) = VT (T ) = 〈log S〉T if t > T for notational convenience.

The market convention of quoting a variance swap is not its mere price, V0(T ). Rather, the
market quotes its “variance volatility” (also called “VolSet”) which is the strike K such that

1
T
〈log S〉T −K2

has zero initial value (hence the name variance “swap”).

Definition 1.1 We call

K0(T ) :=

√
V0(T )

T
(1.2)

the variance swap volatility of the variance swap with maturity T .

These variance swaps will be the cornerstone of our investigation. We shall develop hedging
strategies which involve dynamic hedging of an exotic payoff with such variance swaps. Such
hedging strategies can only work if the underlying assets are liquid enough and if there is a
well-developed market for them. Hence, let us make a third fundamental economic assumption:

Assumption 3 A liquid6 and frictionless7 market of variance swaps on S exists for all maturi-
ties T < ∞. In particular, at any time t, there are variance swap prices Vt(T ) for t < T < ∞
available in the market.

Remark 1.2 Assumption 3 is nowadays largely satisfied for the world’s main indices such as
SPX, NDX, STOXX50E, GDAXI, FTSE, N225 and so on,8 but it should be noted that at the
time of writing all those markets are broker markets.9

However, we argue that this is not a fundamental problem because most investment banks
will be able to quote an internal fair price with a very tight spread. Hence, the desk which is to
run the risk management for, say, options on variance can use the variance swap desk’s internal
valuation for their risk management.

5I.e, limn↑∞ supi=1,...,n |tn
i − tn

i−1| = 0.
6Trading in variance swaps is instant and not subject to transaction size limits.
7There are no transaction costs, taxes or bid/ask spreads.
8We refer to the indices via their Bloomberg codes.
9This means that transactions can not be made via an exchange and that bid/ask spreads remain relatively

high: e.g on September 26th 2005, the spread on a very liquid STOXX50E December 2006 variance swap is

around 0.5 volatility points compared with 0.25 volatility points on an ATM European option with the same

maturity). Also, the ability to trade continuously is constrained as each transaction is executed on a case-by-case

basis.
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Variance Swap Market Prices
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Figure 1.1: Example variance swap prices. The rices are quoted in “variance swap volatility” (1.2).

1.1.2 Options on Variance

Since we are going to model directly the prices of variance swaps, they become an input in our
framework. The idea is to use a variance swap market model to price more exotic products.
The most obvious class of structures which is suited for our approach is what we call “options
on variance”.

Here are a few examples of such products (precise definitions of the terms “options on
variance” and “options on realized variance” can be found on page 60):

Example 1.3 Standard vanilla options on realized variance are calls and puts on realized vari-
ance,10

( 1
T
〈log S〉T −K2

)+
and

(
K2 − 1

T
〈log S〉T

)+
,

or European options on realized volatility,
(√

1
T
〈log S〉T −K

)+

and

(
K −

√
1
T
〈log S〉T

)+

.

Other “options on variance” are options on forward variance swaps,
(

VT (T2)− 〈log S〉T
T2 − T

−K2

)+

where T2 > T . This is an option on a variance swap with maturity T2 which starts at time T .

Appendix B provides an example term sheet for a call on realized variance and a sheet for a
volatility swap (i.e., a zero-strike call on realized volatility).

Such plain options on variance might be the most obvious application of a variance swap
market model, but they are not the only products which can be priced and hedged within

10Strikes K are usually quoted in “volatility”, hence the squared K in the payoffs to normalize them to (annu-

alized) variance.
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the framework presented here: since our approach also provides a consistent way to define a
correlation structure between the stock and its instantaneous variance (see definition 2.22),
such models are also well-suited to risk-manage classic “volatility” products if the correlation
structure is well-defined.

Examples are:

• Forward-Started calls: (
ST2

ST1

− k

)+

for 0 < T1 < T2 and k ≥ 0.

• Globally floored Cliquets:
{

d∑

i=1

min
(

LocalCap, max
(

STi

STi−1

− 1, LocalFloor
))}+

,

for 0 = T0 < · · · < Td and LocalFloor ≤ 0 ≤ LocalCap.

• Napoleons: {
C + min

i=1,...,d

(
STi

STi−1

− 1
)}+

,

for 0 = T0 < · · · < Td and C > 0.

• Multiplicative Cliquets:
{(

d∏

i=1

max
(

STi

STi−1

, 1
))

− 1

}+

,

for 0 = T0 < · · · < Td.

A term sheet for a Napoleon structure can also be found in appendix B on page 147.

1.2 Mathematical Notation

For most of the discussion we will adapt the notation of Revuz/Yor [RY99].

Basics

We will make use of the standard notations x∨y := max(x, y), x∧y := min(x, y) and x+ := x∨0.
The symbol R>0 denotes all strictly positive real numbers x > 0 while R≥0 is the set of all non-
negative numbers. We will write both A ⊂ B and A ⊆ B to denote x ∈ A ⇒ x ∈ B (the symbol
⊆ is used to indicate it is common that A = B). If A is a strict subset of B, we will write
A  B. The transpose of a vector

x =




x1
...

xd




is denoted by x′. Since most vectors are considered column vectors (it will be explicitly mentioned
if they are row vectors), we omit the prime if written in text; i.e.x = (x1, . . . , xd) shall denote
the same column vector as above. Moreover, we write Rd×m for the space of matrices with d

rows and m columns; for M ∈ Rd×m we denote by M j
i the element with the jth column and the

ith row (see equation (1.3) below for an example).
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Measurability and Integrability

The Lebesgue measure on Rd is denoted by λd and we set λ := λ1.
Let A be a σ-algebra. We use Lp(A,P) to denote the A-measurable random variables X

such that EP[|X|p] < ∞ (the notion of the measure is omitted if P is clear from the context).
Given a topological space U , we denote by B(U) its Borel-σ-algebra. For the canonical

Wiener space, P denotes the predictable σ-algebra on C[0,∞)× R≥0.
Let X = (Xt)t≥0 be a stochastic process. We denote by FX = (FX

t )t≥0 its complete right-
continuous filtration. Note that any process X defined up to T < ∞ can be defined for t > T as
Xt = XT . For a given filtration F, an adapted process X and an F-stopping time τ , the stopped
process is defined as Xτ

t := Xτ∧t.
If G = (Gt)t≥0 is a second filtration, we say G is a sub-filtration of F, denoted by G ⊆ F, iff

Gt ⊆ Ft for all t. For two σ-algebras A and B, we also define A∨B as the joint σ-algebra.

Stochastic Integration

Let G be a complete and right-continuous sub-filtration of F, and let Q be a measure on F∞.
A process X = (Xt)t≥0 is called a (G,Q)-martingale on the stochastic base (Ω,F∞,F,P) if
XT ∈ L1(GT ,Q) for all finite T and EQ [ XT | Gt ] = Xt for all t < T < ∞. Note that we do
not require limt↑∞Xt to exist or to be defined: we will consider martingales up to arbitrary but
only finite T .

The space of all continuous (G,Q)-martingales X = (Xt)t≤T with horizon T < ∞ is de-
noted by HT (G,Q). We also use H2

T (G,Q) for all continuous square-integrable martingales and
Hloc

T (G,Q) for all continuous local martingales, i.e. those processes X = (Xt)t≥0 such that there
exists an increasing sequence of stopping times τd ≤ τd+1 with limd↑∞ τd = T such that Xτd is
element of H2

T (G,Q) for each d. Note that the stopping times can be chosen in a way such that
Xτd is bounded.

To ease notation, we will omit the notion of the measure or the σ-algebra if it is clear from
the context.

For a d-dimensional martingale X = (X1, . . . , Xd) ∈ H2
T (G,P) we define the set of admissible

integrands L2
T (X;G,Q) as all G-predictable processes ϕ = (ϕt)t∈[0,T ] such that

EQ

[
d∑

i=1

∫ T

0
‖ϕi

s‖2
2 d〈Xi〉s

]
< ∞ .

The space Lloc
T (X;G,Q), on the other hand, is the space of integrands for the local martingale X,

i.e. all G-predictable process ϕ = (ϕt)t∈[0,T ] such that

Q

[
d∑

i=1

∫ T

0
‖ϕi

s‖2
2 d〈Xi〉s < ∞

]
= 1 .

Note that this property is invariant under equivalent changes of measure.
For all of the symbols Hp

T , Hloc
T , L2

T and Lloc
T , we drop the notion of T if the respective

property holds for all finite T .

Notation of Stochastic Integrals

Let µ : Rm → Rm and σ : Rm → Rm×d be measurable functions. Assume X is a d-dimensional
continuous semi-martingale in the sense of Revuz/Yor [RY99]. Let Y0 ∈ Rm and assume that
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Y = (Yt)t≥0 satisfies:

Y i
t = Y i

0 +
∫ t

0
µi(Ys) ds +

d∑

j=1

∫ t

0
σj

i (Ys) dXj
s (1.3)

for i = 1, . . . ,m (note the notation of the matrix σj
i (y) according to our convention above).

We write this equation also as

Yt = Y0 +
∫ t

0
µ(Ys) ds +

d∑

j=1

∫ t

0
σj(Ys) dXj

s

or, even more compact,

Yt = Y0 +
∫ t

0
µ(Ys) ds +

∫ t

0
σ(Ys) dXs .

Finally, we denote by E(X) the Doléans-Dade exponential

Et(X) := exp
{

Xt − 1
2
〈X〉t

}

of a semi-martingale X.
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Consistent Modelling
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Chapter 2

Consistent Variance Curve Models

In this chapter, we introduce the theoretical framework for models which are designed to capture
the market prices of variance swaps alongside the stock price. Our initial approach is very similar
to the well-known Heath-Jarrow-Merton (HJM) approach to interest rate modeling [HJM92].
We will then specialize the general case in section 2.3 to finite-dimensionally parameterized
models which are easier to handle in practise.

We will start with an overview in which we will also formulate the main problems (P1) to (P3)
which this chapter addresses. Technical details and definitions will follow in section 2.2 page 21ff.

Examples are presented in chapter 3; issues of market completeness and practical implications
of hedging are the subject of chapter 4, while chapter 5 will use the results of chapter 3 to show
how recalibration of stochastic volatility models can lead to static arbitrage in the “meta-model”
of the institution. In particular, it is shown that the speed of mean-reversion in mean-reverting
variance curve models must be kept constant. Chapter 6 then presents the implementation of
an example model.

The core theory discussed here has been presented first in [B06b]. The theory is also dis-
cussed in a more applied context in Bermudez/Buehler/Ferraris/Jordinson/Overhaus/Lamnouar
[BBFJLO06], where additional examples and practical applications are presented.

2.1 Problem Statements and Overview

The most fundamental question when modeling variance swaps and the stock price is clearly
absence of arbitrage:

Problem (P1)

Given today’s variance swap prices V0(T ) for all maturities T ∈ [0,∞), we want to model the
price processes V (T ) = (Vt(T ))t∈[0,∞) and the stock price S together, such that the joint market
with all variance swaps and the stock price itself is free of arbitrage.

Apart from the additional presence of the stock price, this closely resembles the situation
in Heath-Jarrow-Morton (HJM) interest rate theory where the aim is to construct arbitrage-
free price processes of zero bonds. We carry this similarity further and introduce the forward
variance curve (v(T ))T≥0 of the log-returns of S, defined as

vt(T ) := ∂T Vt(T ) T, t ≥ 0

17
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on some stochastic base W := (Ω,F∞,P,F) which supports an extremal Brownian motion W .1

We then have a HJM-type result, namely that (under the assumptions of the next sec-
tion) v(T ) must be a local martingale for each T and therefore has no drift. This will be carried
out in section 2.1, where we will also introduce the “Musiela-parametrization” v̂ of v in terms
of a fixed time-to-maturity x,

v̂t(x) := vt(x + t) x, t ≥ 0 .

It is then also shown in theorem 2.13 that for all Brownian motions B on W the market of all
variance swaps (V (T ))T∈[0,∞) and the B-“associated price process” S, defined by

St := Et(X)

dXt :=
√

v̂t(0) dBt

}
(2.1)

is free of arbitrage because S is a local martingale. In such a case we call the curve v a variance
curve model, and B has the intuitive meaning of a “correlation structure”. We want to emphasize
that these no-arbitrage-conditions are very straightforward to enforce, in remarkable contrast to
the severe difficulties in this respect with the “stochastic implied volatility models” mentioned
in the introduction.

Remark 2.1 We want to stress that we do not attempt to develop a model to price variance
swaps — on the contrary, we assume that their market prices are given; we want to make use
of this information to construct a market model of variance.

Finite-Dimensional Realizations

In practise we are interested in forward variance curves which are given as a functional of a
finite-dimensional Markov-process: we aim to represent v̂ as

v̂t(x) = G(Zt;x) (2.2)

where G : Z × R≥0 → R≥0 for Z ⊆ Rm
≥0 open is a suitable non-negative function and where Z

is an Z-valued Markov process which is a strong solution to an SDE

dZt = µ(Zt)dt +
d∑

j=1

σj(Zt)dW j
t Z0 ∈ Z (2.3)

defined in terms of the d-dimensional standard Brownian motion W . A pair (G, Z) is called
consistent iff (2.2) defines a variance curve model for all Z0 ∈ Z. This leads to the natural
question:

Problem (P2)

When are a parameter process Z and a functional G consistent?

This will be addressed in section 2.3, and we will show in theorem 2.24 that consistency essen-
tially implies

∂xG(z; x) = µ(z) ∂zG(z; x) +
1
2
σ2(z) ∂zzG(z) .

1For details and a precise setup, please refer to section 2.2.
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In this case, if the “correlation structure” in (2.1) is given in terms of a measurable “corre-
lation function” ρ : Z × R≥0 → [−1, +1]d such that S = E(X) satisfies

dSt =
√

v̂t(0)
d∑

j=1

Stρ
j(Zt, St) dW j

t ,

then we call the model a Markov variance curve model (definition 2.22): the vector (Z, S) is
Markov and we will see in part II of this thesis that (under regularity assumptions) these kinds of
models are also extremal on their filtration (theorem 4.19), i.e. that they allow the computation
of their hedging ratios by differentiating the value function of a payoff in the stock and state
parameters (corollary 4.21).

These results are closely related to the concept of “finite-dimensional realizations” (FDR)
for HJM interest rate models, as introduced by Björk/Christensen [BC99] and Björk/Svensson
[BS01]: we say that “a variance curve model v̂ admits an FDR”, if for every z ∈ Z there ex-
ists a consistent pair (G, Z) such that v̂t(·) = G(Zt; ·) up to a strictly positive stopping time.
Note that we now understand v̂t(·) and G(Zt; ·) as functions, and therefore omit the argument x.

Problem (P3)

Given a family v̂ and a smooth functional G, when will v̂ admit an FDR in terms of G?

We will solve this problem locally in Section 2.4 by following closely ideas from Filipovic/Teichmann [FT04]:
writing v̂ as a solution to an H-valued SDE in an Hilbert-space H

dv̂t = ∂xv̂tdt +
d∑

j=1

bj
t (v̂t) dW j

t , (2.4)

we show in Theorem 2.29 that v̂ stays locally in G(Z) ⊂ dom(∂x) if

bj(v̂) ∈ Tv̂G

for j = 0, . . . , d and v̂ ∈ G \ ∂G. The first component b0 is the Stratonovich-drift of v̂,

b0
t (v̂) := ∂xv̂t − 1

2

d∑

j=1

Dbj(v̂) bj(v̂)

(we also show the relevant conditions on the boundary of G). Additionally, we prove that if v̂

stays locally in G and if G is invertible, then it has a finite dimensional representation

v̂t = G(Zt)

in terms of a (locally) consistent parameter process Z which is explicitly given in terms of b

and G.

2.1.1 Review of the Stochastic Volatility Case

For illustration, we assume in this subsection that we are given a continuous stock price process
as a positive continuous local martingale S on a stochastic base W = (Ω,F∞,F,P) whose
complete and right-continuous filtration F is generated by an d-dimensional Brownian mo-
tion W = (W 1, . . . ,W d). We also assume that its variance swap prices are finite.
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This subsection is intended to build some understanding of the required properties of a
variance swap model, but from a logical point of view it can be omitted and the reader may
immediately proceed to section 2.2 on page 21.

Proposition 2.2 If S is a positive local martingale, we can write it as

St = Et(X) (2.5)

where

Xt =
∫ t

0

√
ζs dBs (2.6)

for some
√

ζ ∈ Lloc and a Brownian motion B. Moreover, X ∈ H2.

Proof – Since S is a positive local martingale, we can write St = Et(X) for some continuous local
martingale X (cf. [RY99] pg. 328, prop. 1.6).

Hence, there exists z ∈ Lloc(W ) such that Xt =
∑d

j=1

∫ t
0z

j
s dW j

s and therefore d〈X〉t = ζt dt

with ζt :=
∑d

j=1(z
j
t )

2. Moreover, ζ−2
t 1ζt>0 is a valid integrand for X since E[

∫ t
0ζ
−1
s 1ζs>0 d〈X〉s] =

E[
∫ t
01ζs>0 ds] ≤ t < ∞. Therefore, we can define

Bt :=
∫ t

0

1√
ζs

1ζs>0 dXt +
∫ t

0
1ζs=0 dW 1

s ,

compare also [RY99] pg.203.
We have 〈B〉t =

∫ t
0

(
ζ−2
s ζ2

s 1ζs>0 + 1ζs=0

)
ds = t, and since B is clearly adapted and contin-

uous, it is a Brownian motion with the required property (2.6). Since the variance swap prices
for all finite T are finite by the initial assumptions, we have E[

∫ T
0 ζs ds] < ∞, i.e. X ∈ H2. ¤

Hence, any positive continuous stock price process can be written as a “stochastic volatility
model” (such as the examples in chapter 3 or the model discussed in chapter 6)

dSt

St
=

√
ζt dBt .

Note, however, that the joint process (S, ζ) will generally not be Markov.

Variance Swaps

Since variance swaps are assumed to be tradable at any time t, the time-t price Vt(T ) is given
as the expectation of the quadratic variation of log S under a martingale pricing measure P:2

Vt(T ) = EP [ 〈log S〉T | Ft ] = EP
[ ∫ T

0
ζs ds

∣∣∣∣ Ft

]
. (2.7)

It is clear from standard arbitrage-theory that the measure P is in general not unique, i.e. the
price processes V (T ) of the variance swaps with maturities T ≥ 0 are in general not determined
by specifying the stock price process (S, ζ) alone.

It is therefore necessary to fix a pricing measure, which we will assume for the remainder of
this subsection is P. We want to stress that by constructing directly the variance swap prices
(which is the subject of this thesis), the prices of variance swaps are given by the market and any

2Under each martingale pricing measure, the price process of each variance swap are by definition martingales.
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pricing measure must have property (2.7). Chapter 4 is devoted to questions of completeness in
variance curve models.

Given that V (T ) is a martingale and due to the extremality of W , we find some b(T ) ∈ Lloc

such that

Vt(T ) = V0(T ) +
d∑

j=1

∫ t

0
bj
s(T ) dW j

s .

Remark 2.3 (Pricing Variance Swaps using European Options)
Neuberger [N92] has shown that the price of a variance swap in the present framework can be
computed as

V0(T ) = 2
∫ 1

0

1
K2

P0(T, K) dK + 2
∫ ∞

1

1
K2

C0(T, K) dK

where P0(T,K) and C0(T,K) denote quoted put and call option prices with maturity T and
strike K. Note that option prices for all strikes are needed for this formula, which can make
this way of pricing variance swaps very sensitive to the specification of out-of-the-money implied
volatilities, in particular those on the downside where the option weights are high.

The above formula is proved in appendix A.1 where we also discuss the impact of dividends
and interest rates.

Forward Variance

By construction, the curve Vt(·) is at any time t absolutely continuous with respect to the
Lebesgue measure λ, hence we can define λ-almost everywhere the derivative along T ,

vt(T ) := ∂T Vt(T ) = E [ ζT | Ft ] (2.8)

which is called the fixed maturity T -forward variance seen at time t (note that vt(T ) is well-
defined for T > t). Note the conceptual similarity with the forward rate in interest rate modeling.

Proposition 2.4 (HJM-Condition for Forward Variance) For all T ≥ 0, the process v(T ) =
(vt(T ))t≥0 defined by (2.8) is a martingale which can be written as

vt(T ) = v0(T ) +
∫ t

0
βs(T ) dWs (2.9)

with β(T ) ≡ ∂T b(T ) ∈ Lloc.3

2.2 General Variance Curve Models

We now introduce our variance curve models: We want to specify the forward variance price
processes v(T ), which we imagine as the expected future instantaneous variance as in the previous

3The fact that β(T ) = ∂T b(T ) follows because for each T , (2.9) holds. Integration along T and exchanging

integration gives that
R T

0
vt(u) du − R T

0
v0(u) du =

R t

0

R T

0
βs(u) du dWs, the right hand side of which is equivalent

to Vt(T ) − V0(T ). The uniqueness of the martingale representation of V (T ) then shows that β(T ) := ∂T b(T )

in Lloc(W ).
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section. This process should allow us to construct a stock process such that the joint market of
stock and variance swaps is arbitrage-free.

As before, we assume that we are given a stochastic base W = (Ω,F∞,F,P) which supports
an d-dimensional P-Brownian motion W which is extremal on the complete and right-continuous
filtration F = (Ft)t≥0. This means that for any local martingale X ∈ Hloc there exists an
ϕ ∈ Lloc(W ) such that

Xt = X0 +
d∑

j=1

∫ t

0
ϕj

u dW j
u .

This property is also called the predictable representation property, or PRP. Finally, we also
assume that (Ω,F∞) is Polish (for example, if it is the standard Wiener space). This is required
in proposition 2.10 below.

Recall that according to assumption 1, there are no interest rates and the forward process
of the underlying stock price (which we have to model) is constant 1.

Definition 2.5 (Variance Curve Model) We call a family v = (v(T ))T≥0 of processes v(T ) =
(vt(T ))t≥0 a Variance Curve Model on W if:

(a) For all T < ∞, v(T ) is a non-negative continuous local martingale with representation

dvt(T ) =
d∑

j=1

βj
t (T ) dW j

t (2.10)

for some β(T ) ∈ Lloc (this is the “HJM-condition” for variance curves).

(b) For all T < ∞, the initial variance swap prices are finite,

V0(T ) :=
∫ T

0
v0(x) dx < ∞ . (2.11)

(c) The process v·(·) is predictable (for example, if vt(·) is left-continuous).

The family v is called a strong variance curve model, if v(T ) is a martingale for all finite T .

By proposition 2.4 it is clear that forward variance must be a local martingale. Finiteness of the
variance swap prices is a very natural assumption if we want to use them as liquid instruments.
Condition (c) is technical and used below to ensure that the short variance is well-defined.

Proposition 2.6 Let v be a Variance Curve model. The variance swap price processes V =
(V (T ))T≥0 given as

Vt(T ) :=
∫ T

0
vt(s) ds (2.12)

are local martingales with dynamics

dVt(T ) =
d∑

j=1

bj
t (T ) dW j

t

where bj
t (T ) =

∫ T
0 βj

t (s) ds. They are true martingales if v is strong.
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Proof – It is clear that V (T ) defined by (2.12) is adapted and therefore is a local martingale.
If v is strong, then we have Vt(T ) = E [ VT (T ) | Ft ] and V0(T ) by (2.11), hence V (T ) is true
martingale for all finite T . The representation of V via b follows easily from (2.10) and the
uniqueness of the representation of V (T ) with respect to W . ¤

Given a variance curve model, we call the positive process

ζt := vt(t) (2.13)

the short variance of v. It is well defined by the requirements of definition 2.5. Given that v(T )
is a supermartingale (because it is a non-negative local martingale; cf. page 24), we have

E
[ ∫ T

0
ζs ds

]
=

∫ T

0
E [ vs(s) ] ds ≤ V0(T ) < ∞ ,

and it follows that process
√

ζ is in L2. This justifies the following definition:

Definition 2.7 (Associated Stock Price Process) For any variance curve model v and an arbi-
trary real-valued Brownian motion B on W, the B-associated stock price process is defined as
the local martingale

St := Et(X) with Xt :=
∫ t

0

√
ζs dBs . (2.14)

The process X is in H2 and if v is a strong variance curve model, then the variance swap prices
on S are given as

E [ 〈log S〉T | Ft ] = E [ 〈X〉T | Ft ] = Vt(T ) ,

where V was defined in (2.12).

It follows then directly by construction

Theorem 2.8 (Variance Swap Market Model) Let v be a variance curve model, B a Brownian
motion and S its associated stock price process. Then, the joint market (S, V ) is free of arbitrage
and we call (S, V ) a variance swap market model.

We call it strong if v is strong and if S is a true martingale.

We see a very convenient property of the current model approach: once the variance curve
model is fully specified by v0 and the volatility structure β, an associated stock price process
can easily be constructed to yield a full variance swap market model which is free of arbitrage.

Remark 2.9 (Interpretation of B) Note that each B defined on the stochastic base W can be
written as

dBt =
d∑

j=1

ρj
t dW j

t

in terms of some stochastic “correlation vector” ρ ∈ L2(W ) with ρt ∈ [−1, +1]d and ‖ρt‖2 = 1.
Since the Brownian motion B defines the “correlation structure” of S with its variance

process, B has the intuitive meaning of a “skew parameter”.

Note, however, while B can be chosen arbitrarily to yield a local martingale S, more care must
be taken if S is required to be a true martingale. For example, we can try to satisfy Kazamaki’s
criterion, cf. Revuz/Yor [RY99] pg. 331, or Novikov’s criterion, pg. 332. If the latter is satisfied,
then S is a true martingale for all Brownian motions B. Another useful result bases on a nice
argument from Sin [S98], which we will present in the next section.
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2.2.1 The Martingale Property and Explosion of Variance

Let S be defined as in (2.14). Since it is a strictly positive local martingale, it is a supermartin-
gale, i.e.E [ST ] ≤ E [S0 ] = 1.4 We now want to derive a condition under which S is a true
martingale: we will show that S is a martingale if and only if the variance process under the
measure associated with the numeraire S does not explode.

To this end, let now τn := inf { t : ζt ≥ n } and τ := supn τn. The stopping time τ is called
the explosion time of ζ and we say “ζ explodes under a measure Q” if Q[τ > T ] > 0 for some
finite T . Note that ζ does not explode under P per construction, i.e. P[τ ≤ T ] = 0.

We fix some finite T . For n = 1, 2, . . . Define the σ-algebra Gn := Fτn∧T and the discrete
time process Dn := Sτn∧T . Note that D = (Dn)n is a martingale on the filtration G = (Gn)n, but
that it is not necessarily uniformly integrable. However, on each Gn, we can define a probability
measure

Pn[A] := EP [Dn1A ] A ∈ Gn .

Since (Ω,F∞) is Polish, so are (Ω,Gn) and (Ω,G∞) where G∞ = FT . Thanks to Kolmogorov’s
extension theorem (see, for example, Aliprantis/Border [AB99] corollary 14.27), there exists a
measure PS on FT which is Kolmogorov consistent with the sequence (Pn)n∈N, i.e.

PS [A] = Pn[A] for all A ∈ Gn,

Intuitively, this is the measure where S is taken as a numeraire (in a localized sense). Its
Lebesgue decomposition w.r.t. P is given as

PS [A] = E [ ST 1A ] + PS [A ∩ {τ ≤ T}] (2.15)

where the last component is singular to P. In particular, (2.15) implies for A = Ω that

1 = E [ ST ] + PS [τ ≤ T ] ,

hence we obtain the following generalization of Sin’s idea [S98]:

Proposition 2.10 The stock S is a martingale if and only if ζ does not explode under PS.

We will make use of this proposition in chapter 6, section 6.1.1, to prove that the stock price of
the model discussed there is indeed a true martingale. The interested reader finds a few more
results on explosions in general diffusion models in chapter 10 of Stroock/Varadahan [SV79].
We will comment on the pricing and hedging in the case where S is a strictly local martingale
in section 4.2.2.

2.2.2 Fixed Time-to-Maturity

In the sprit of Musiela’s parametrization [M93] of forward rates, we now introduce the respective
process for variance curve models:

Definition 2.11 We call
v̂t(x) := vt(t + x)

the fixed time-to-maturity forward variance, and V̂t(x) :=
∫ x
0 v̂t(s) ds the fixed time-to-maturity

variance swap.
4Let Sn

t := Sτn∧t for a localizing sequence (τn)n of stopping times. On T ≤ τn, Sn
T = Sn+1

T = ST , hence, by

Fatou, E [ ST ] = E [ lim infn↑∞ Sn
T ] ≤ lim infn↑∞ E [ Sn

T ] = S0.
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Note that above definition is valid for each fixed t and almost all ω. To define a proper process v̂,
we have to impose some additional regularity on v.

Proposition 2.12 Let v be a variance curve model. Assume that v0 is differentiable in T , that β

in (2.10) is B[Rd]× P-measurable5 and almost surely differentiable in T with
√∫ T ∗

0
∂τβ

j
t (T )2 dT ∈ Lloc(W ) for j = 1, . . . , d and all τ < ∞ and T ∗ < ∞. (2.16)

Then, ∂T vt(T ) coincides a.e. with ∂T vt(T ) = ∂T v0(T ) +
∑d

j=1

∫ t
0∂T βj

s(T ) dW j
s and the fixed

time-to-maturity forward variance v̂(x) is of the form

v̂t(x) = v̂0(x) +
∫ t

0
∂xv̂s(x) ds +

d∑

j=1

∫ t

0
β̂j

s(x) dW j
s (2.17)

where β̂j
t (x) := βj

t (t + x).

Proof – With the assumptions above, we have

v̂t(x) = vt(t + x)
(2.9)
= v0(t + x) +

∫ t

0
βu(t + x) dWu

= v0(x) +
∫ t

0
∂T v0(s + x) ds +

∫ t

0

{
βu(u + x) +

∫ t

u
∂T βu(s + x) ds

}
dWu

(∗)
= v0(x) +

∫ t

0

{
∂T v0(s + x) +

∫ s

0
∂T βu(s + x) dWu

}
ds +

∫ t

0
βu(u + x) dWu

= v0(x) +
∫ t

0
∂T vs(s + x) ds +

∫ t

0
βu(u + x) dWu

= v̂0(x) +
∫ t

0
∂T v̂s(x) ds +

∫ t

0
β̂u(x) dWu ,

as claimed. Equation (∗) follows because of (2.16): property (2.16) basically ensures that∫ s
0∂T βu(T ) dWu is a local martingale (see, for example, Protter [P04] pg. 208). ¤

The reverse of the previous proposition constitutes the HJM-condition for the fixed time-
to-maturity case: Assume we start with a family v̂, when defines vt(T ) := v̂t(T − t) a variance
curve model?

Theorem 2.13 (HJM-condition for Variance Curve Models) Let v̂ = (v̂(x))x≥0 be a family of
non-negative adapted processes v̂(x) = (v̂t(x))t≥0 such that:

(a) The curve v̂(·) is almost surely in C1.

(b) The process v̂(x) has a representation

dv̂t(x) = ∂xv̂t(x) dt +
d∑

j=1

β̂j
t (x) dW j

t . (2.18)

5Recall P was the predictable σ-algebra on Ω× R≥0.
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(c) The prices of variance swaps V̂0(x) :=
∫ x
0 v̂0(s) ds are finite for all x < ∞.

(d) The volatility coefficient β̂ in (2.18) is C1 and satisfies
√∫ x∗

0 ∂xβ̂j
t (x)2 dx ∈ Lloc for all

finite x∗.

Then, the family v = (v(T ))T∈[0,∞) given by

vt(T ) :=

{
v̂t(T − t) t ≤ T

v̂T (0) t > T
(2.19)

defines a variance curve model. If, moreover, v(T ) is a true martingale for all T , then it is a
strong variance curve model.

Proof – We have to satisfy the conditions of definition 2.5. The finiteness of variance swap prices
is satisfied by (b). Now assume v is defined by (2.19). As before,

dvt(T ) = dv̂t(T − t) =
d∑

j=1

β̂j
t (T − t) dW j

t , (2.20)

i.e. v(T ) is a local martingale. Let ẑt(x) :=
∑n

j=1 β̂j
t (x) dW j

t and note that condition (d) above
on β̂ ensures that ∂xẑ is well-defined. Hence, we can compute

vT (T )− vt(T )
(2.20)
=

d∑

j=1

∫ T

t
β̂j

t (T − t) dW j
t

=
d∑

j=1

∫ T

t

{
β̂j

t (T )−
∫ T

T−t
∂xβ̂j

t (y) dy

}
dW j

t

= ẑT (T )− ẑt(T )−
∫ T

T−t

{
∂xẑT (y)− ∂xẑt(y)

}
dy

= ẑT (T − t)− ẑt(T − t) ,

so v(T ) is a local martingale. Finally, ζt := v̂t(0) is by construction well defined. ¤

This theorem allows us to specify v̂ instead of v. We will therefore also refer to v̂ as a “variance
curve model” if it satisfies the conditions of theorem 2.13.

Conclusion 2.14 Theorems 2.8 and 2.13 answer (P1) from the introduction.

Remark 2.15 Despite the introduction of forward rates in terms of fixed-time-to-maturity by
Musiela, it is more common in interest-rate theory to deal with fixed maturity objects because the
maturities of underlying market instruments are typically fixed points in time (such as LIBOR
rates and Swaps).6

A variance curve, in contrast, is more naturally seen as a fixed time-to-maturity object, in
particular given that the short end of the curve is the instantaneous variance of the log-price of
the stock as seen in definition 2.7.7

6In a typical LIBOR rate model, the short rate is not modelled.
7For example, an option on realized variance (such as the call from example 1.3) is not an option on a variance

swap.
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2.2.3 Fitting the Market with Exponential Variance Curve Models

Let f̂t(x) be the interest rate forward rate with time-to-maturity x observed at some time t. An
advantage of the HJM-approach for interest-rates is that the current forward rate is given as

f̂t(x) = f̂0(x) +
∫ t

0

(
∂xf̂s(x)− αs(x)

)
ds +

d∑

j=1

∫ t

0
β̂j

s(x) dW j
s

with HJM-drift αt(x) :=
∑d

j=1 β̂j
t (x)

∫ x
0 β̂j

t (y) dy so that the initial curve f̂0 can be estimated
from market quotes without imposing additional constraints on the volatility structure β̂.

In contrast, our specification of v̂ must remain non-negative, which renders the specification
of the volatility structure dependent on v̂0.

In the main part of this thesis we will deal with finite-dimensional realizations of v̂, where
this is not a concern (because we will write v̂ in terms of a non-negative functional). However,
if we were to work directly with v̂, we might consider parameterizing it as

v̂t(x) = v̂0(x)eŵt(x) . (2.21)

Proposition 2.16 Equation (2.21) defines a variance curve model ŵ iff v̂0 is in C1 and if ŵ

with ŵ0 = 0 has a representation

dŵt(x) =


∂xŵt(x)− 1

2

d∑

j=1

γ̂j
t (x)2


 dt +

d∑

j=1

γ̂j
t (x) dW j

t (2.22)

for some γ ∈ Lloc which is C1.

One such model is presented in section 3.4.
As we mentioned before, ensuring that vt(T ) = eŵt(T−t) is a true martingale is not trivial.

However, if we want to allow arbitrary initial curves and be able to choose the volatility structure
independently from the chosen initial curve, the approach above can be employed.

Remark 2.17 In [Du04], Dupire discusses a model of the type above for a constant γ and a
single driving Brownian motion, i.e. where v̂ is log-normal. His article also contains details on
hedging in such a framework. Also see example 3.10.

Proof of the proposition– Let us first assume that

dŵt(x) = α̂t(x) dt +
d∑

j=1

γj
t (x) dW j

t .

and that v̂ defined in (2.21) is a variance curve model. This implies that v0 is in C1. Using Itô’s
formula and assuming v̂0 ≡ 1 for simplicity, we have

dv̂t(x) = v̂t(x)


α̂t(x) dt +

d∑

j=1

γj
t (x) dW j

t


 +

1
2
v̂t(x)




d∑

j=1

γj
t (x)2


 dt .

Let βj := v̂γj , which is in C1. Since vt(T ) := v̂t(T − t) is a local martingale, we must have

α̂t(x) +
1
2

d∑

j=1

γj
t (x)2 =

∂xvt(x)
v̂t(x)

= ∂xwt(x) .
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On the other hand, if v̂ is defined by (2.21) for a process ŵ satisfying (2.22) and ŵ0 = 0, then
another application of Itô’s formula shows that v̂ is a variance curve model. ¤

If we want to allow arbitrary initial curves and be able to choose the volatility structure
independently from the chosen initial curve, this approach can be employed. Unfortunately, it
does not allow v̂t to be zero, hence models such as Heston’s are not covered in this setting. It
also forbids forward variances which are zero due to holidays or suspended trading.

However, we can extend this idea to fit an arbitrary variance curve model to observed market
prices – this will discussed in section 3.4 on page 43.

Fitting the Market vs. Structural Models

Let us briefly comment on our decision to focus mainly on what we will call “structural” models
as opposed to “fitting” models.

We call models with a parsimonious “functional” form (such as stochastic volatility models
or the consistent variance curve models of the next section) “structural”: these models try to
describe the dynamics of the underlying and its volatility using an assumed dynamic (SDE) for
the interaction of the various stochastic factors. In general, such models are given in terms of
low-dimensional homogeneous Markov-processes.

On the other side of the spectrum, we have “fitting” models (chiefly Dupire’s ground-braking
implied local volatility [D96], but also his approach [Du04] cited above), which try to obtain
as much relevant structure and dynamics from the observed market prices as possible. For
example, the dynamical behavior of the stock in an implied local volatility model is completely
determined by the initially observed set of option prices. In interest rates, a generic example is
HJM’s approach, but also Hull/White’s “extended Vasiček” model [HW93].

The latter models provide a powerful pricing tool for structures which are “close” to the
underlying market instruments. They are therefore very well suited for many standard ap-
plications.8 Such models are usually given as non-homogeneous Markov-processes (or even
non-Markov processes in the case of HJM-models).

However, in particular implied local volatility suffers from a lack of “predictive power”: The
future market data “scenarios” which are predicted by the model can differ widely from what
users would accept as being realistic. This has been reported frequently by practitioners (see,
for example, Overhaus [O05] or Hagan et al. [HKLW02]).

In contrast, while “structural” models will fit less well to today’s observed market data, they
make clearly defined predictions on the future shape of the market. For example, our variance
curve models guarantee that the variance swap price curve is always of a certain shape. In the
same vein, stochastic volatility models such as Heston [H93], and also our variance curve models,
preserve the general shape of the implied volatility surface, because the Markov property of these
models implies that this surface is a function of the (few) state parameters.

This matters if we want to risk-manage products which are not “close” to the calibration
instruments. Consider for example the case of a forward started call spread with payoff

(
ST2

ST1

−K1

)+

−
(

ST2

ST1

−K2

)+

8Note that since Dupire’s local volatility fits perfectly the market of European options, it also perfectly reprices

the variance swaps; see appendix A.1.
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for 0 < T1 < T2 and K1 < K2. At the time of writing, such options are not yet liquidly traded,
so we have to use a financial model to evaluate and hedge them. However, as soon as the “reset
date” T1 is reached, the option turns into a standard call spread which is liquidly traded. It is
therefore important that whatever model we use to compute the initial price, it makes reasonable
predictions of the shape of the implied volatility surface (as a measure of option prices) at time
T1: in particular, the “skew” (i.e. the difference between the implied volatilities with strikes K1

and K2) needs to be realistic. This is achieved if we use structural models.

Remark 2.18 The above distinction between “structural” and “fitted” models is superficial. As
remark 2.23 below shows, local volatility models are actually a sub-class of consistent variance
curve models. In section 3.4 we will therefore discuss how to turn a “structural” variance curve
model into a “fitting” model.

2.3 Consistent Variance Curve Functionals

In the previous section, we have discussed variance curve models which were given in terms of
general integrable processes. These have the aforementioned drawbacks: on one hand, it is very
difficult to check whether a general model of the form (2.18) actually stays non-negative (this is
particularly difficult for diffusions with values in Hilbert spaces, cf. equation (2.32) on page 35).

On the other hand, it is not clear how such models can be used in practise. Indeed, consider
the situation in the reality of a trading floor: we do not actually see an infinite number of variance
swap prices (V0(T ))T≥0 in the market. Rather, a discrete set of swap prices will be interpolated
by some functional which is parameterized by a finite-dimensional parameter vector.

Hence, we want to focus on variance curves which are given in terms of such finite-dimensionally
parameterized variance curve functionals.

Definition 2.19 (Variance Curve Functional) A Variance Curve Functional is a non-negative
C2,2-function G : (z; x) ∈ Z × R≥0 −→ R≥0 such that

∫ T
0 G(z; x) dx < ∞ for all (z, T ).

The open subset Z ⊂ Rm
≥0 is called the parameter space of G.

Given a functional G, we now have to find a parameter process Z = (Zt)t∈[0,∞) such that

v̂t(x) := G(Zt; x) , x ≥ 0 ,

forms a variance curve model. To avoid arbitrage, we need to meet the conditions of theo-
rem 2.13. We want to focus on diffusions Z which are strong solutions of an SDE

dZt = µ(Zt) dt +
d∑

j=1

σj(Zt) dW j
t (2.23)

with locally Lipschitz coefficients µ : Z 7→ Rm and σj : Z 7→ Rm for j = 1, . . . , d defined up to a
strictly positive stopping time τ > 0. The set of coefficients (µ, σ) which admit a unique strong
solution for all Z0 ∈ Z will be denoted by Ξ. We do not require that Z is confined to the set Z;
the question whether Z can leave Z is discussed in section 2.3.3 below. To ease notation we
also refer to elements of Ξ as “processes” Z, even though they are actually families of processes
(since they depend on the starting point Z0).

Note that (2.23) allows to define, say, the nth coordinate as “time”, i.e. Zn
t = t: simply

set µn(z) := 1 and σj
n(z) := 0 for j = 1, . . . , d. This way, a deterministic dependency of the
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coefficients µ and σ on time can be incorporated in the above formulation (see example 2.23
below and the “fitting models” in section 3.4).

Definition 2.20 (Consistent Parameter Process) A locally Consistent Parameter Process for
(G,Z) is a diffusion process Z ∈ Ξ with explosion time τ > 0, such that for all Z0 ∈ Z we have
Zt∧τ ∈ Z and the family

v̂t(x) := G(Zt∧τ ; x) x ≥ 0 ,

is a variance curve model.9

The pair (G,Z) is then called locally consistent. It is called globally consistent if τ = ∞
for all Z0 ∈ Z. We also say that (G,Z) are strongly consistent if v above is a strong variance
curve model.

Once we have determined a consistent pair (G,Z), an associated stock price is defined by choos-
ing a correlation structure between v and the stock price process in form of a Brownian motion B

(see theorem 2.8 and the subsequent remark 2.9). To preserve the Markov property of the joint
process (Z, S), we impose some structure on the choice of B.

2.3.1 Markov Variance Curve Market Models

Definition 2.21 A correlation function is a measurable map ρ : Z×R≥0 → [−1, +1]d such that
‖ρ(z, s)‖2 = 1 for all (z, s) ∈ Z × R≥0.10

Definition 2.22 (Markov Variance Curve Market Model) Assume (G,Z) is locally consistent
with explosion time τ > 0 and that ρ is a correlation function. Let the ρ-associated stock price
S = (St)0≤t≤τ be given as the unique solution to the equation

dSt

St
=

√
ζt

d∑

j=1

ρj(Zt, St) dW j
t , ζt := G(Zt, 0) . (2.24)

By definition, the process (St, Zt) is then Markovian and we call the triple (G,Z, ρ) a local
Markov variance curve market model or MVCMM.

It is called global if τ = ∞.
Moreover, it is called strong if (G,Z) is globally consistent and if the variance swap market

model is strong, i.e. if all variance swaps and the stock price are true martingales.

Proof that (2.24) admits a unique strong solution– Let τ > 0 be the explosion time of Z and
define the local martingales M j

t :=
∫ t
0

√
G(Zt, 0) dW j

t until τ . Let uj
t (x) := xρj(Zt; x). Equation

(2.24) becomes

dSt =
d∑

j=1

uj
t (St) dM j

t {t ≤ τ} .

Since ‖ut(x) − ut(y)‖ ≤ 2d||x − y||, existence and uniqueness up to τ follow from theorem 7 in
Protter [P04] pg. 253. ¤

9Strictly speaking, the process Z depends on the starting point Z0, hence we are actually speaking about a

family of processes rather than a single process.
10The norm || · ||2 is the usual L2 norm, hence the condition above translates into 1 =

P
j=1,...,d(ρj(z, s))2 for

all (z, s).
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Remark 2.23 (Local Volatility) A “local volatility” such as Dupire’s implied local volatility [D96]
is also a Markov variance curve market model.

We show a more general result: let Z ∈ Ξ, assume that ρ is a correlation function and that η

is a suitable “local volatility” function such that

dSt

St
= η(St, Zt)

d∑

j=1

ρj(St, Zt) dW j
t (2.25)

has a unique strong strictly positive solution S which is a true martingale up to all finite T (note
that as above, η can depend on time by imposing, for example, Zn

t = t).
Let Y = (Y 0, . . . , Y m) := (S, Z1, . . . , Zm). This process uniquely solves

dYt = µ̃(Yt) dt +
d∑

j=1

σ̃j(Yt) dW j
t

with µ̃(z, s) = (0, µ1(z), . . . , µm(z)) and

σ̃(z, s) =




s η(s, z)ρ1(s, z) · · · s η(s, z)ρd(s, z)
σ1

1(z) · · · σd
1(z)

...
. . .

...
σ1

m(z) · · · σd
m(z)




.

By construction Y ∈ Ξ. The variance curve functional for (2.25) is given by

G(z̃;x) := E
[

η(Sx, Zx)2
∣∣ S0 = z̃0; Z0 := (z̃1, . . . , z̃m)

]
.

Now, it is just a matter of notation to see that

√
G(Yt; 0)

d∑

j=1

ρj(St, Zt) dW j
t = St η(St, Zt)

d∑

j=1

ρj(St, Zt) dW j
t = dSt .

¤

2.3.2 HJM-Conditions for Consistent Parameter Processes

We can now prove the following theorem, which is closely related to proposition 3.1.1 in [F01].
It paves the way to answer problem (P2) (also note theorem 5.20 in section 5.3.1 which provides
a related result for “entropy swaps”).

Theorem 2.24 (HJM-condition for Variance Curve Functionals) A process Z ∈ Ξ is locally con-
sistent with (G,Z) if and only if for each Z0 ∈ Z, the process Z stays in Z and

∂xG(z;x) = µ(z) ∂zG(z;x) +
1
2
σ2(z) ∂zzG(z;x) (2.26)

holds on Z × R≥0.
Moreover, Z is strongly consistent if and only if additionally τ = ∞ and G(Z0; T ) =

E [ G(ZT ; 0) ] holds for all finite T .
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The above equation (2.26) is short-cut notation for

∂xG(z; x) =
m∑

i=1

µi(z) ∂ziG(z; x)

+
1
2

m∑

i,k=1




d∑

j=1

σj
i (z)σj

k(z)


 ∂zizk

G(z;x) .

Proof – First assume that Z is locally consistent with G. Then v̂t(x) := G(Zt; x) is a variance
curve model and

dv̂t =
(

µ∂zG +
1
2
σ2 ∂zzG

)
dt +

d∑

j=1

σj ∂zGdW j
t

shows that
∂xG(Zt; x) = µ(Zt) ∂zG(Zt; x) +

1
2
σ2(Zt) ∂zzG(Zt; x)

on t ≤ τ almost surely by theorem 2.13. In particular, this condition has to hold for each Z0 ∈ Z,
which shows that indeed (2.26) must hold.

Now assume on the other hand that (2.26) holds. Using Itô and (2.26) it is clear that
vt(T ) := G(Zt; T − t) is a local martingale up to τ for all T with

dvt(T ) =
d∑

j=1

βj
t (T ) dW j

t , βj
t (T ) :=

m∑

i=1

σj
i (Zt) ∂ziG(Zt; T − t) ∈ Lloc

T . (2.27)

This proves the theorem for the local case. The case of a strong variance curve is obvious. ¤

Theorem 2.24 gives us the required conditions for problem (P2) when a pair (G,Z) is con-
sistent. However, it leaves the question open whether a process Z given by a pair (µ, σ) leaves
Z at some stage or not. This will be treated in theorem 2.26 in the following section.

2.3.3 Extensions to Manifolds: When does Z stay in Z ?

In the following section, we want to discuss conditions on when Z stays inside the domain Z
of G(·; x). Since the methods we want to employ require a notion of differentiability, we will now
assume that Z is a regular sub-manifold with boundary. The reason why we include the case with
boundary is that this situation arises in many examples, notably the “linearly mean-reverting”
models (such as Heston’s) which are discussed in chapter 3.

Definition 2.25 (Invariant manifold) Let (µ, σ) ∈ Ξ. A regular sub-manifold with boundary
Z ⊆ Rm

≥0 is called locally invariant for Z if for any starting point Z0 ∈ Z, there exists a strictly
positive stopping time η such that Zt∧τ ∈ Z for t < η.

We call Z globally invariant or just invariant if we can set η = ∞.

Recall that if Z is a d-dimensional regular sub-manifold with boundary ∂Z, then TxZ denotes
the tangent space of Z in an interior point x ∈ Z. By definition, the boundary ∂Z of Z is
either empty or a (d− 1)-dimensional manifold, and for a point x ∈ ∂Z, its (d− 1)-dimensional
tangent space with respect to ∂Z is denoted by Tx∂Z. For any regular sub-manifold, its closure
is denoted by Z̄, and contains its boundary (which might be empty).
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For any point x ∈ ∂Z, we can find a smooth map ϕ : U → V from an open set U into
a relatively open set V ⊂ Rd−1 × R≥0, which generates the “inward pointing” tangent space
(TxZ)≥0 of M in x.11 We will now follow Björk et al. [BC99] and derive a condition under
which Z will stay in a regular manifold with boundary Z.

Assume σ ∈ C1(Z), and define the vector

Σ(z) :=




Σ1(z)
...

Σm(z)


 (2.28)

with Σi(z) given as the sum
∑d

j=1(∂zσ
j
i )σ

j(z), where we define

(∂zσ
j
i )σ

j(z) :=
m∑

`=1

(∂z`
σj

i )(z)σj
` (z) . (2.29)

Theorem 2.26 Assume that Z ∈ Rm is a d-dimensional regular sub-manifold with boundary
and let Z ∈ Ξ with coefficients (µ, σ) and σ ∈ C1.

Then, Z is locally invariant for (µ, σ) if

µ(z)− 1
2 Σ(z) ∈ TzZ
σj(z) ∈ TzZ

}
(2.30)

for all z ∈ intZ.
Moreover, if Z is closed in the relative topology, then it is globally invariant if additionally

µ(z)− 1
2 Σ(z) ∈ (TzZ)≥0

σj(z) ∈ Tz∂Z

}
(2.31)

for all z ∈ ∂Z.12

Proof – The proof is an application of Stratonovich-calculus. See also Filipovic/Teichmann [FT04]
theorem 1.2 or Teichmann [T05] pg. 19 for a similar statement.

Step 1: We first look at the general case of a sub-manifold, i.e. assume Z0 ∈ intZ. Then,
there exists an open set U0 (in the relative topology) such that Z0 ∈ U0 ⊂ Z. The solution Y

to a Stratonovich-SDE
dYt = η(Yt) dt + ς(Yt) ◦ dWt

starting at Y0 = Z0 will stay in Z until it leaves U0, if and only if

η(z) ∈ TzZ
ς(z) ∈ TzZ

}

for all z ∈ U0: This follows since Stratonovich calculus obeys the same rules as the standard
calculus.13 Also, the exit time τ from U0 is strictly positive, so Z is locally invariant for Y .

From that, it is also clear why the process may only stay locally in Z: If the sub-manifold is
open in the relative topology, Y can approach the boundary in a sequence of steps and so finally

11See Hirsch [H91] for an introduction into manifolds. Our notation follows Teichmann [T05].
12Note that ∂Z might be empty.
13For an introduction into this topic, see for example Roger/Williams [RW00] chapter V.
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leave the manifold via its boundary (think of the circle around the open unit ball). Indeed, it
can be shown that it can only leave the manifold at a boundary.

Step 2: Now consider the case where Z is closed in the relative topology, i.e. that ∂Z̄ ⊂ Z.
By standard calculus, the condition η(z) ∈ (TzZ)≥0 ensures that the pure drift term stays on
the manifold. The second condition ς(z) ∈ Tz∂Z on the other hand ensures that the diffusion
term does not drive the solution out of the (d− 1)-dimensional manifold ∂Z, just as above, so
the diffusion Y cannot leave Z. This situation is illustrated in figure 2.1 below.

Figure 2.1: The tangent spaces (TxZ)≥0 and Tx∂Z for a point x ∈ ∂Z.

Step 3: The previous remarks can now be translated to our case using the transition between
Stratonovich and Itô integral by way of the general formula

M j ◦ dW j = M j dW j − 1
2
d〈M j ,W j〉

for some semi-martingale M .
Let i = 1, . . . , m and j = 1, . . . , d. As before, σj

i is the volatility coefficient of Zi with respect
to the jth Brownian motion. We have

dσj
i (Zt)

Itô=
m∑

`=1

(∂z`
σj

i )(Z) dZ`
t + (· · ·) dt

=
m∑

`=1

(∂z`
σj

i )(Z)
d∑

k=1

σk
` (Zt) dW k

t + (· · ·) dt ,

and consequently

d〈σj
i (Z),W j〉t =

m∑

`=1

d〈
∫ ·

0
(∂z`

σj
i )(Zs)

d∑

k=1

σk
` (Zs)dW k

s , W j〉t

=
m∑

`=1

(
(∂z`

σj
i )(Zt)σ

j
` (Zt)

)
dt

(2.29)
= : (∂zσ

j
i )σ

j dt .

By defining Σ as in (2.28) we get

dZt =
(

µ(Zt)− 1
2
Σ(Zt)

)
dt +

d∑

j=1

σj(Zt) ◦ dW j
t ,
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to which step 1 and 2 of the proof apply. ¤

We are hence able to answer (P2) satisfactory in the case where Z is a sub-manifold:

Conclusion 2.27 (Solution to problem (P2)) To check whether Z and G are consistent, we
apply theorem 2.24 to find out whether the process is consistent on Z, and theorem 2.26 to
determine whether it also stays (at least locally) in Z.

2.4 Variance Curve Models in Hilbert Spaces

We will now focus on problem (P3): Given v̂ now as a solution of a general SDE of the
form (2.18), and a curve functional G such that G(Z) is a sub-manifold of a Hilbert-space H,
under which conditions on the coefficients of v̂ can we find a consistent parameter process Z

such that
v̂t = G(Zt) ?

(We now drop the x-argument since we understand v̂t and G(Zt) in this section as elements of a
function space.) Note that such a representation is also an efficient way to ensure non-negativity
of the process v̂.

To be able to approach this question, we have to impose some regularity on the possible
curves of v̂. Indeed, we will employ the theory of stochastic differential equations in Hilbert
spaces, the standard reference on which is daPrato/Zabcyk [PZ92]; also see Teichmann [T05].
We will closely follow Björk/Svensson [BS01], Filipovic/Teichmann [FT04] and Teichmann [T05].

We remain on the space W = (Ω,F∞,P,F) which supports an extremal d-dimensional Brow-
nian motion W . Additionally we assume that we are also given a Hilbert-space H, which will
contain our forward variance curves.14

In H, we assume v̂ is given as a solution to a stochastic differential equation of the type

dv̂t = ∂xv̂t dt +
d∑

j=1

bj(v̂t) dW j
t (2.32)

with locally Lipschitz vector fields β1, . . . , βd : U ⊂ H → H where U is an open set. A (mild)
solution15 of such an equation typically only exists up to a strictly positive stopping explosion
time η, hence we focus on questions of local consistency. The operator ∂x : dom(∂x) ⊂ H → H is
the generator of the strongly continuous semigroup (Tt)t≥0 of shift operators (Ttv̂)(x) := v̂(x+t);
see da Prato/Zabcyk [PZ92] for details.

Assumption 4 The set G := G(Z) ⊂ H is a sub-manifold with boundary ∂G.16

Definition 2.28 (Locally Consistency and FDR) We say v̂ = (v̂t)0≤t≤η is locally consistent
with G if there exist a locally consistent (µ, σ) ∈ Ξ for G with explosion time τ > 0 such that

v̂t = G(Zt)
14For examples of suitable Hilbert-spaces, see Filipovic [F01].
15For concepts of solutions for equations in Hilbert-spaces, see da Prato/Zabcyk [PZ92] or Teichmann [T05].
16The boundary is finite-dimensional by construction.
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for all t ≤ η ∧ τ . We call the pair (G, Z) a finite dimensional representation or FDR of the
variance curve v̂.

Let us define the Stratonovic drift of v̂,

b0(v̂) := ∂xv̂ − 1
2

d∑

j=1

(Dbj)(v̂) bj(v̂)

where (Dbj)(v̂) denotes the Frechet-derivative of bj along v̂. Note that the drift b0 is only
well-defined for v̂ ∈ dom(∂x).

Theorem 2.29 The process v̂ = (v̂t)0≤t≤η with v̂0 ∈ G is locally consistent with G if and only if

(a) G ⊂ dom(∂x).

(b) For all v̂ ∈ G \ ∂G and for j = 0, . . . , d,

bj(v̂) ∈ Tv̂G . (2.33)

(the tangent space Tv̂G in v̂ = G(z) is given by Img ∂zG(z)).

(c) For all v̂ ∈ ∂G,
b0(v̂) ∈ (Tv̂G)≥0 and bj(v̂) ∈ Tv̂∂G (2.34)

for j = 1, . . . , d.17

For a proof, see Filipovic/Teichmann [FT04] or theorem 13 in [T05]. We also obtain:

Corollary 2.30 If v̂ is locally consistent with G and if G is invertible on Z, then the parameter
process (µ, σ) specified by

σj(z) = (∂zG)(z)−1 bj(G(z))

for j = 1, . . . , d and

µ(z) := (∂zG)(z)−1 b0(G(z)) +
d∑

j=1

(∂zσ
j)(z) σj(z) .

is in Ξ and locally consistent with G.

Conclusion 2.31 (Local solution to problem (P3)) At least locally, Theorem 2.29 solves prob-
lem (P3): a variance curve model admits an FDR (G,Z) if and only if (2.33) and (2.33) are
satisfied. If G is invertible, the parameter process Z is given in Corollary 2.30.

17We used (Tv̂G)≥0 to denote the inward pointing tangent-space of G in the boundary point v̂.



Chapter 3

Examples

In this chapter, we will apply the theory developed in the previous chapter to some examples
of variance curve models. We will mainly focus on exponential-polynomial variance curves, but
also discuss a few other approaches.

The main purpose of this section is to show how theorem 2.24 restricts the possible choices of
parameter processes for a given functional G. According to theorem 2.24, the coefficients (µ, σ)
of every consistent process Z ∈ Ξ must satisfy (2.26), i.e.

∂xG(z; x) =
m∑

i=1

µi(z) ∂ziG(z; x)

+
1
2

m∑

i,k=1




d∑

j=1

σj
i (z)σj

k(z)


 ∂zizk

G(z;x) . (3.1)

Hence, if G is given, we need to find (µ, σ) ∈ Ξ such that (3.1) is satisfied.

3.1 Exponential-Polynomial Variance Curve Models

Definition 3.1 The family of Exponential-Polynomial Curve Functional is parameterized by
z = (z1, . . . , zr; zr+1, . . . , zm) ∈ R>0

r × Rm−r and given as

G(z; x) =
r∑

i=1

pi(z; x)e−zix (3.2)

where pi are polynomials of the form pi(z, x) =
∑N

j=0 aij(z)xj with coefficients aij such that
pi ≥ 0 λd-as. W.l.g. we can assume that deg(pi) > deg(pi+1).1

(Also compare Björk/Svensson [BS01] and Filipovic [F01].)
We assume that any parameter process has Zi 6= Zj for i 6= j, since otherwise we can just

rewrite (3.2) accordingly. Also note that
∫ T
0 G(z; x) dx < ∞ for all T < ∞.

Lemma 3.2 Let Z ∈ Ξ be a parameter process consistent with an exponential-polynomial variance
curve functional.

Then, the first r coordinates Z1, . . . , Zr are constant.
1We denote by deg(p) the degree of a polynomial p.

37
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Proof – We have

∂xG(z, x) = −zi

r∑

i=1

pi(z; x)e−zix +
r∑

i=1

∂xpi(z; x)e−zix (3.3)

∂zk
G(z, x) = −pk(z;x)xe−zkx1k≤r +

r∑

i=1

∂zk
pi(z; x)e−zix (3.4)

∂2
zkzk

G(z, x) = pk(z; x)x2e−zkx1k≤r − ∂zk
pk(z; x)xe−zkx1k≤r (3.5)

+
r∑

i=1

∂2
zkzk

pi(z; x)e−zix (3.6)

The terms ∂2
zkzk

G(z, x) with k ≤ r are the only terms in (3.1) which involve polynomials of
degree deg(pi) + 2 as factors in front of the exponentials e−zix. Since we choose the zi distinct,
and because neither µ nor σ depends on x, this implies that

0 =
d∑

j=1

σj
k(z)σj

k(z)

for k ≤ r, which implies that the vector σk must vanish. In other words, the states zk for k ≤ r

cannot be random.
Next, we use (3.4) and find with the same reasoning (now applied to the polynomials of

degree deg(pi) + 1) that µi = 0 for i ≤ r, so Zi must be a constant. ¤

We will now present two particular exponential-polynomial curve functionals. In the light of
lemma 3.2, we will keep the exponentials constant but investigate the possible dynamics of the
remaining parameters.

Example 3.3 (Linearly Mean-Reverting Variance Curve Models) The Functional

G(z;x) := z2 + (z1 − z2)e−κx .

with z ∈ Z := R≥0 × R≥0 is consistent with Z ∈ Ξ if µ1(z) = κ(z2 − z1) and µ2(z) = 0 (that is,
Z2 must be a martingale). The volatility parameters can be freely specified, as long as Z1 and
Z2 remain non-negative.

We call such a model a linearly mean-reverting variance curve model.

Proof – Theorem 2.24 with equation (2.26) implies that we have to match

−κ(z1 − z2)e−κx = µ1(z)e−κx + µ2(z)(1− e−κx) .

Since the left hand side has no term constant in x, we must have µ2(z) = 0 (i.e. Z2 is a martin-
gale), and then µ1(z) = κ(z2 − z1). ¤

A popular parametrization is σ2 = 0 and σ1(z1) = ν
√

z1 for some ν > 0, which has been
introduced by Heston [H93]: Z1 is then the square of the short-volatility of the associated stock
price process. Another possible choice for the parameters in example 3.3 is

µ(z) =

(
κ(z2 − z1)

0

)
σ(z) =

(
νzα

1 0
ηρz2 ηρ̂z2

)
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with constants α ∈ [ 12 , 2], ν, η ∈ R>0, ρ ∈ (−1, 0] and ρ̂ =
√

1− ρ2. In this example, the
mean-reversion level z2 is a geometric Brownian motion (with the intuitive drawback that it can
become very large).

Example 3.4 (Fitting Heston to the market) In the light of the discussion in Section 2.2.3, let
us show an approach here to fit a Heston-model to an observed variance swap curve while re-
taining computational tractability.

To this end, consider Heston’s model [H93] with a time-dependent mean-reversion level,

dZ1
t = κ(θ(Z2

t )− Z1
t ) dt + ν

√
Z1

t dW 1
t

dZ2
t = dt

with the associated stock price process given by a constant correlation ρ. (Note that Z2
t = Z2

0 +t.)
Assume now that we observe a market variance curve û0 ∈ C1[R≥0] and let θ(x) := κû0(x)+

∂xû0(x). If θ(x) ≥ 0 (such that Z1
t ≥ 0), then Z is fits the market in the sense that

E
[

Z1
x

∣∣ Z0 = (u0(0), 0)
]

= û0(x) .

The characteristic function of the logarithm of the stock price in this model can be computed
using standard methods; see Bermudez et al. [BBFJLO06] for details.

The next functional is a generalization of the linearly mean-reverting case above. It is akin to
Svensson’s model for interest rate forward curves.

Example 3.5 (Double Mean-Reverting Variance Curve Models) Let c, κ > 0 constant and let
z = (z1, z2, z3) ∈ R≥0 × R2

>0. The Curve Functional

G(z; x) := z3 + (z1 − z3)e−κx + (z2 − z3)

{
κ

κ−c (e−cx − e−κx) (κ 6= c)

κx e−κx (κ = c)
(3.7)

is consistent with any parameter process (µ, σ) such that

dZ1
t = κ(Z2

t − Z1
t ) dt + σ1(Zt) dWt

dZ2
t = c(Z3

t − Z2
t ) dt + σ2(Zt) dWt

dZ3
t = σ3(Zt) dWt

and is called a double mean-reverting variance curve model.

Proof – First let κ = c. Then,

∂xG(z, x) = {−κ(z1 − z3 + κx(z2 − z3)) + κ(z2 − z3)} e−κx

and

∂z1G(z, x) = e−κx

∂z2G(z, x) = κxe−κx

∂z3G(z, x) = 1− e−κx + κxe−κx .

This yields µ3 = 0. The remaining equation reads

−κ(z1 − z2)− κ2x(z2 − z3) = µ1(z) + κxµ2(z)
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such that µ2(z) = κ(z3 − z2) and µ1(z) = κ(z2 − z1).
Now assume κ 6= c. Let γ := κ

κ−c . Then,

G(z;x) := z3 + (z1 − z3 − γ(z2 − z3))e−κx + γ(z2 − z3)e−cx

and therefore

∂xG(z, x) = −κ {z1 − z3 − γ(z2 − z3)} e−κx − c(z2 − z3)γe−cx

∂z1G(z, x) = e−κx

∂z2G(z, x) = −γe−κx + γe−cx

∂z3G(z, x) = 1 + (γ − 1)e−κx − γe−cx .

Hence, once more µ3 = 0. Furthermore µ2 = c(z3 − z2) and finally µ1 = κ(z3 − z1). ¤

This turns out to be a flexible and applicable variance curve functional. Figure 3.1 shows a

few typical shapes of the variance swap strike term structure, i.e. of the curve T 7→
√∫ T

0 G(z; x) dx/T

(this is the market standard to quote a variance swap). See also figure 6.3 on page 86 which
illustrates the impact of changing the parameters on the shape of the curve.

Double mean-reverting curves
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Figure 3.1: Various shapes of the variance swap prices given for various parameterizations of the func-

tional (3.7). The graph shows “variance swap volatilites”
√∫ T

0
G(z;x) dx/T , cf. (1.2).

At the time of writing, the variance functional (3.7) fits the variance swap market of major
indices well, so this kind of double mean-reverting model is a good candidate for a variance
curve model (a similar model has been proposed by Duffie et al. [DPS00] who use σ1(z) =

√
z1

and σ2(z) =
√

z2 with a particular sparse correlation structure).
We will discuss the implementation of a three-model with all technical details in chapter 6.

Example 3.6 The one-factor model

dζt = κ(θ(t)− ζt) dt + ν
√

ζt dWt

dθ(t) = c(m− θ(t)) dt
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is also consistent with the variance swap curve functional (3.7). In such a “Heston model
with time-dependent mean-reversion speed”, European options written on the stock can still be
evaluated relatively efficient using Fourier-inversion (there is no need to solve a Ricatti equation).
See Bermudez et al. [BBFJLO06] for details.

3.2 Exponential Curves

As in (3.2), let (pi)i=1,...,r be polynomials and let

g(z; x) =
r∑

i=1

pi(z;x)e−zix

with z = (z1, . . . , zr; zr+1, . . . , zm) ∈ R>0
r × Rm−r. Set

G(z; x) := exp(g(z; x)) . (3.8)

Using theorem 2.24, a necessary condition for a consistent pair is

∂xg(z; x) = µ(z) ∂zg(z;x) +
1
2
σ2(z)

{
(∂zg(z; x))2 + ∂zzg(z; x)

}
, (3.9)

where (∂zg(z;x))2 =
∑m

i,j=1 ∂zig(z;x)∂zjg(z; x). As a result, we obtain the following lemma,2

whose proof is omitted because it is very similar to the proof of lemma 3.2.

Lemma 3.7 If Z is a consistent parameter process for G, then its coordinates Z1, . . . , Zm are
constant. Moreover, there must be at least one pair i 6= j such that Zi = 2Zj, otherwise Z is
entirely constant.

As an immediate consequence, we have

Example 3.8 (Exponential Mean-Reverting Models) Let

g(z;x) = z2 + (z1 − z2)e−κx +
z3

4κ
(1− e−2κx)

with (z1, z2, z3) ∈ Z := R× R× R>0.
Then, µ1(z) = κ(z2 − z1), σ1(z) =

√
z3 and µ2 = µ3 = σ2 = σ3 = 0, i.e. the only consistent

factor model is the exponential Ornstein-Uhlenbeck stochastic volatility model discussed in depth
by Fouque et al. in [FPS00].

Proof – The result is a relatively straight-forward consequence of (2.26) given that µ and σ must
be defined for all z ∈ Z and that σ2 ≥ 0. ¤

3.3 Variance Swap Volatility Curves

In this section, we want to discuss a few variance curve term-structure interpolation schemes in
terms of a volatility function, i.e. schemes where the variance swap price is given as a functional

V̂t(x) := xΣ2(Zt;x) where Σ(z; x) = z1 + z2w(x) (3.10)
2Compare theorems 3.6.1 and 3.6.2 from Filipovic [F01] pg.52ff.



CHAPTER 3. EXAMPLES 42

for some volatility “term-structure” function w.3

Such curves arise if standard forms of implied volatility term-structure functionals are em-
ployed to model the variance swap curve. This approach might be appealing if the implied
volatility term-structure is well captured by a particular choice of w.4 A few choices which have
been considered for implied volatility interpolation are

w0(x) := 0 (3.11)

w1(x) := ln(1 + x) (3.12)

w2(x) :=
√

ε + x (3.13)

w3(x) := 1/
√

ε + x (3.14)

The first case w0 is called the “Black&Scholes” case, since the term structure of variance swaps
is linear. See also Haffner pg. 87 in [H04] for a discussion of implied volatility term-structure
interpolation.

In our previous notation,

G(z; x) := ∂x

(
Σ(z; x)2x

)
= Σ(z;x)2 + 2Σ(z; x)∂xΣ(z;x)x

i.e.

G(z;x) = (z2
1 + 2z1z2w(x) + z2

2w
2(x)) + 2(z1 + z2w(x))z2x∂xw(x)

= z2
1 + 2z1z2(w(x) + ∂xw(x)x) + z2

2(w
2(x) + 2w(x)x∂xw(x)) .

We have to show that

∂xG(z; x) = µ(z) ∂zG(z; x) +
1
2

σ2(z) ∂zzG(z; x) (3.15)

holds.

Corollary 3.9

(a) Case (3.11) is consistent iff µ1(z1) = 0, i.e.Z1 is a non-negative martingale.

(b) Case (3.11) is the only case of (3.11)-(3.14) which is consistent.

Proof – The first statement is obvious. We prove the second statement for w1, since it works
similarly for w2 and w3. Hence let w(x) = w1(x) = ln(1 + x). For the remainder of section we
denote w′(x) := ∂xw(x).

Focusing on (3.15), we obtain

∂xG(z; x) = 2z1z2

{
2w′(x) + w′′(x)x

}

+2z2
2

{
2w′(x)w(x) + w′(x)2x + w′′(x)w(x)x

}

∂z1G(z; x) = 2z1 + 2z2

{
w(x) + w′(x)x

}

∂z2G(z; x) = 2z1

{
w(x) + w′(x)x

}
+ 2z2

{
w2(x) + 2w(x)w′(x)x

}

∂z1z1G(z; x) = 2

∂z2z2G(z; x) = 2
{
w2(x) + 2w(x)w′(x)x

}

∂z1z2G(z; x) = 2
{
w(x) + w′(x)x

}
.

3In practise, variance swaps are quoted in terms of their volatility.
4Gatheral [Ga04] notes that in some stock price models, the shape of the term-structure of implied volatility

is similar to the shape of the variance swap curve



CHAPTER 3. EXAMPLES 43

We now show for w1 that z2 = 0 and µ1 = 0, i.e. that the functional degenerates to the
Black&Scholes case. First, we compute the derivatives

w1(x) = ln(1 + x) , w′1(x) =
1

1 + x
and w′′1(x) = − 1

(1 + x)2
.

We therefore have

∂xG(z; x) = 2z1z2

{
2

1 + x
− x

(1 + x)2

}
+ 2z2

2

{
2

ln(1 + x)
1 + x

+
x− x ln(1 + x)

(1 + x)2

}
.

Now note that none of the terms ∂ziG(z; x) or ∂2
zizj

G(z; x) contains terms in 1/(1 + x)2. Hence,
to satisfy (3.15), for all x ≥ 0, we must have

0 = −2z1z2x + 2z2
2(x− x ln(1 + x)) . (3.16)

Assume z2 6= 0. Then, (3.16) implies z1 = z2(1− ln(1 + x)), which is not possible. Hence z2 = 0
and the curve G reduces to the “Black& Scholes case” w0. ¤

Corollary 3.9 has also shown that the variance curve functional G(z, x) := z1 yields a con-
sistent variance curve model for the parameter process Z if µ1 = 0.

A particular example is a model closely linked to the SABR model [HKLW02] with β = 1,

dζt = σ ζt dW 1
t

dXt =
√

ζt d(ρW 1
t +

√
1− ρ2W 2

t )

St = Et(X)





(3.17)

with log-normal short variance. Note that this model can be turned into a fitting model by
adding a time-dependent drift to the geometric Brownian motion ζ. We generalize this idea in
the following section.

3.4 Fitting Models

In this section, we show two techniques how variance curve models can fit an initial term structure
of variance swaps perfectly. In both cases assume that at time 0, we observe an implied variance
swap price curve

V0(T ) =
∫ T

0
v0(x) dx . (3.18)

with a differentiable forward variance curve v0 > 0. We say a consistent variance curve model
(G,Z) fits the market if

G(Z0;x) = v0(x) .

Multiplicative Fitting

We start with an example of a “fitting” log-normal type model (which is essentially Dupire’s
model [Du04]; cf. also remark 2.17) to motivate this approach:
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Example 3.10 (Dupire’s [Du04] fitting log-normal short variance model) Assume ν is a non-
negative continuous function. Let

G(z1, z2; x) := v0(x + z2)z1 .

Then, the parameter process Z with

µ(z) =

(
0
1

)
and σ(z) =

(
ν(Z2

t ) Z1
t

0

)
(3.19)

(such that Z2
t = Z2

0 + t) is consistent with G and the short variance ζ is given as

ζt = v0(t) Et

(∫ ·

0
ν(u) dW 1

u

)
= v0(t)Z1

t . (3.20)

In particular, the model fits the market: G(1, 0;T ) = v0(T ) for all T .

Remark 3.11 For ν constant, the classic extended Black&Scholes model is recovered.

Such a model has also been discussed by Bergomi [B05], who’s model is essentially the same
approach based on a two-factor mean-reverting log-normal model. In the context of these mod-
els, note also Jourdain’s article [J04] where the loss of the martingale property for such models
is discussed if the correlation structure is misspecified. For example, if the correlation between
W 1 above and the Brownian motion B which drives the stock (cf. (2.14)) is positive, then the
associated stock price process to (3.19) is only a local martingale. We comment on pricing and
hedging with local martingales in section 4.2.2.

Proof – It is evident that Z2
t = t and therefore also that Z1

t = Et

(∫ ·
0 ν(u) dW 1

u

)
. As for (3.1),

observe that

∂xG(z, x) = ∂xv0(x + z2)z1

∂z1G(z, x) = v0(x + z2)

∂z2G(z, x) = ∂xv0(x + z2)z1 ,

which shows already that (G,Z) are consistent. ¤

The same approach can be applied for any variance curve models: if we take an arbitrary given
variance curve model, we can always scale it by the ratio of the market forward variance curve
and the model’s own forward variance curve. The result is a model which perfectly fits the
market:

Example 3.12 (Multiplicative Fitting) Let (G̃, Z̃) with (µ̃, σ̃) be consistent and let Z0 ∈ Z ⊂
Rm such that G̃(Z̃0; ·) > 0. Assume as before we observe v0 as in (3.18). Then let z ∈ Rm+1

and define
G(z; x) := G0(x + zm+1) G̃(z1, . . . , zm; x)

with
G0(x) :=

v0(x)
G̃(Z0;x)

.

Then, G is consistent with Z = (Zt)t where Zt = (Z̃1
t , . . . , Z̃m

t , t) and fits the market. The short
variance is given as

ζt = G0(t) G̃(Zt; 0) .
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Proof – Equation (3.1) is satisfied and Z is in Ξ by construction. ¤

Fitting Mean-Reverting Models

The above approach can obviously also be applied to the mean-reverting type models of sec-
tion 3.1, for example

dZ̃1
t = κ(θ − Z̃1

t ) dt + σ(Z̃1
t ) dW 1

t (3.21)

and G̃(z, x) = θ + (z1 − θ)e−κx. The advantage there is that for these models, the volatility
coefficient σ can be arbitrary (as long as it ensures that the process remains positive) without
altering the shape of the variance curve of the model G̃. For example, we can choose

σ(z) = 1z≤K1 zα + 1z>K1 Kα K2 − z ∧K2

K2 −K1

for α ∈ (1/2, 1] and two large but finite constants θ < K1 < K2. In this case, (3.21) still has
a non-explosive unique solution (because σ is bounded) and this solution is bounded. Hence,
the associated stock price is a martingale for which all moments exists. The difference between
using a linearly mean-revering model and a log-normal model as above is that if we want to
impose a boundary on the log-normal model (3.20), it will change the variance curve function G̃

of the model in a way which is numerically much more expensive.5

However, “multiplicative fitting” of a model may not be the most natural approach. Indeed,
in the case of linearly mean-reverting models, it seems to be more natural to modify the level
of mean-reversion to fit the market curve:

Example 3.13 (Fitting mean-reverting model) Fix κ > 0, α ∈ [12 , 1], ν > 0 and let θ be a
strictly positive differentiable function.

G(z1, z2; x) := z1e
−κx + κ

∫ x

0
e−κ(x−s)θ(s + z2) ds

has a consistent parameter process with

µ(z) =

(
κ(θ(z2)− z1)

1

)
and σ(z) =

(
ν zα

1

0

)
.

Once again, Z2
t = t.

Moreover, if

θ(x) := v0(x) +
1
κ

∂xv0(x) (3.22)

is non-negative, then the model fits the market: G(v0(0), 0;T ) = v0(T ).

5Too see this, assume that we have the exponential mean-reverting model of example 3.8 in the form dZ̃1
t =

−κZ̃1
t dt + νdW 1

t with G̃(z1; x) := ez1e−κt+ 1
2

1−e−2κt

2κ . In this model, the short variance is given as ζt = eZ1
t which

can explode under the stock price measure: indeed, the stock becomes a strict local martingale if d〈W 1, B〉t =

ρ dt for a positive correlation ρ (cf. Jourdain [J04]). To alleviate this problem, we could try to bound the

short variance by some constant K, say ζ̂t := ζt ∧ K. But this, in turn, will alter the variance curve function

Ĝ(z1; x) := E [ ζx ∧K | ζ0 = z1 ] in a non-linear way – essentially,since ζx ∧K = ζx − (ζx −K)+, we see that the

function G is essentially G̃ less the Black&Scholes call price function.
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The short variance in this model is ζt = G(Zt; 0) = Z1
t as in the mean-reverting models we saw

before. Also note that the non-negativity condition on (3.22) essentially means that the market
must have the form v0(x) = e−κxu(x) for a non-decreasing function u.

Proof – For (3.1), observe that

∂xG(z, x) = −κz1e
−κx + κθ(x + z2)− κ2

∫ x

0
e−κ(x−s)θ(s + z2) ds

∂z1G(z, x) = e−κx

∂z2G(z, x) = κ

∫ x

0
e−κ(x−s)∂xθ(s + z2) ds

= κ
∣∣∣ e−κ(x−s)θ(s + z2)

∣∣∣
x

s=0
− κ2

∫ x

0
e−κ(x−s)θ(s + z2) ds

= κθ(x + z2)− κθ(z2)e−κx − κ2

∫ x

0
e−κ(x−s)θ(s + z2) ds .

Sorting the e−κx-terms yields indeed that

µ1(z) = −κ(z1 − θ(z2)) .

As in example 3.3, the volatility term can be specified freely. Positivity of the process Z1 with
the volatility structure given above is guaranteed for each T < ∞, since Z1 dominates the
solution to

dyt = κ(θ∗ − yt) dt + ν(t) yα
t dW 1

t θ∗ := inf t≤T θ(t) > 0

(see comparison theorems for stochastic coefficients in Protter [P04] pg. 324).
To show that (3.22) fits the market, note that

G(v0(0), 0;x) = v0(0)e−κx + κ

∫ x

0
e−κ(x−s)θ(s) ds

= v0(0)e−κx + κ

∫ x

0
e−κ(x−s)

(
v0(s) +

1
κ

∂xv0(s)
)

ds

= v0(0)e−κx + κe−κx

∫ x

0
eκsv0(s) ds

+
∣∣∣e−κ(x−s)v0(s)

∣∣∣
x

s=0
− κe−κx

∫ x

0
eκsv0(s) ds

= v0(x) ,

as claimed. ¤

A notable advantage of the previous approach is that if applied to Heston’s model, the stock
price retains its martingale property as long as the correlation ρ remains non-positive. Moreover,
its Fourier transform can be computed relatively efficiently as is discussed in [BBFJLO06].
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Chapter 4

Theory of Replication

In part I of this thesis, we have introduced variance curve models where the price processes of
variance swaps and the stock price were at least local martingales under a measure P, so we do
not face questions of arbitrage.

However, we have frequently expressed our desire to use a variance curve model to compute
hedges for exotic payoffs with respect to stock and variance swaps. This of course requires that
the market under consideration is complete. In this chapter, we will therefore discuss conditions
under which both general Markov-driven models and our variance curve models are extremal on
their filtrations (an extension to these results can be found in Buehler/Teichmann [BT06]).

In the next chapter, we shall also discuss the practical issue of actually implementing a
hedging strategy: even if a model is a good picture of reality, we cannot expect it to fit to the
market perfectly. Hence, we will need to recalibrate not only the states, but also the allegedly
constant parameters of the model.1 To this end, we will develop the concept of the meta-
model of an institution and will show the impact on recalibration. In particular, we will show
that changing certain parameters such as the speed of mean-reversion in Heston will result in
arbitrage in the “meta-model” of the institution.2

4.1 Problem Statements and Overview

The first step we will take is to clarify that we do not intend to hedge all possible payoffs which
are measurable with respect to the “big” filtration F. To this end, let us take a step back and
consider a general market with traded instruments S = (S1, . . . , SN ) defined on the stochastic
base W = (Ω,A,F,P) which supports an F-extremal Brownian motion W = (W 1, . . . , W d).

In such a market, we will usually only want to attempt to perfectly hedge contracts which
depend on the tradable instruments only. Mathematically, this means that a potential payoff HT

is measurable with respect to the filtration generated by S; we accordingly call this market the
market of relevant payoffs, denoted by

L1
+(FS

T ;P) :=
{

HT ≥ 0
∣∣∣HT ∈ L1(FS

T ;P)
}

(4.1)

(we will drop the notion of P if it is obvious from the context).
1The difference between a state and a parameter of a model is that a state (such as “ShortVol” ζt in Heston’s

model in example 3.3) has some prescribed random dynamics, while a parameter (for example, Heston’s speed of

mean-reversion κ) is supposed not to change over the life of the trade.
2Please refer to chapter 5.1 for precise definitions.

48
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Remark 4.1 Payoffs which are “not relevant” in the above sense are contracts on non-tradable
underlying quantities such as the weather, electricity etc. The adjective “not relevant” refers to
the fact that we can not expect to perfectly hedge such payoffs. They may well be very relevant
in other markets.

The question of completeness in such a market is a question of replication:

Definition 4.2 (Market completeness) Let S = (St)t≥0 with St = (S1
t , . . . , SN

t ) be a vector of
local martingales.

• Let A be a σ-algebra such that A ⊆ FT for some T < ∞. We say the market L1
+(A) is

complete with respect to S if each HT ∈ L1
+(A) can be written as

HT = H0 +
N∑

k=1

∫ T

0
∆k

u dSk
u

for some ∆ ∈ Lloc
T (S;FS) and H0 = E [ HT ] ∈ R≥0 such that the value process H =

(Ht)t∈[0,T ] defined as

Ht := H0 +
N∑

k=1

∫ t

0
∆k

u dSk
u . (4.2)

remains non-negative. We then say that ∆ “replicates” or “hedges” the payoff HT . The
constant H0 is called the price of HT .

• Let A = (At)t≥0 be a sub-filtration of F. We then say that the market A is complete with
respect to S if L1

+(AT ) is complete with respect to S for all finite T .

Obviously, market completeness with respect to S is essentially the predictable representation
property (PRP) of the vector S, except for the non-negativity requirement of the value process.
This limitation is required to avoid “suicide strategies”. The non-negativity requirement also
ensures that all value processes (4.2) are true martingales.3

We also remark that if a hedging strategy exists, it is unique in Lloc(S).

Problem (P4)

When is the market FS of relevant payoffs complete with respect to S ?

What does “completeness” mean in real markets? In practise, the replication of a payoff HT is
thought to be the result of “delta-hedging”: here, we use the derivatives of the value function
of the payoff with respect to the coordinates of the tradable instruments as hedging ratios.

The basic idea is as follows: assume as above that we observe a vector S = (S1, . . . , SN )
of tradable assets such that S is a local martingale, and additionally assume that S is Markov.
Let then HT be some FS

T -measurable payoff such that HT ≡ H(ST ) for some measurable, non-
negative function H. We can then obviously define the non-negative martingale H = (Ht)t∈[0,T ]

via
Ht := E

[
HT | FS

t

]
.

3It is clear that Ht is at least a local martingale, so it is a super-martingale because it is bounded from below

(cf. footnote page 24). Hence, E [ HT ] ≤ E [ H0 ] = E [ HT ], which proves that H is actually a martingale. See also

section 4.2.2 where we discuss issues arising from pricing and hedging in a situation when the stock price which

is only a local martingale.
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Due to the Markov-property of S, there exists then a function ht such that

Ht ≡ h(t;St) := E [ HT | St ] .

If h(t; s) is now differentiable in t and twice differentiable in s, then we can apply Ito and obtain

HT = H0 +
N∑

k=1

∫ T

0
∂skh(t;St) dSk

t +





∫ T

0
∂th(t; St) dt +

1
2

n∑

j,k=1

∫ T

0
∂2

sksjh(t; St) d〈Sk, Sj〉t





= H0 +
N∑

k=1

∫ T

0
∂skh(t;St) dSk

t ,

where the drift terms vanish since (Ht)t is by construction a martingale.
This shows that “delta-hedging works” in the sense that we can replicate HT by the “classic”

hedge in terms of S via the derivative of its value function h with respect to the tradable
instruments.

General Markovian Markets

Clearly, the above approach requires that h is sufficiently differentiable. Moreover, it does
not deal with arbitrary measurable functions HT ∈ L1

+(FS
T ). Finally, it also requires that all

information in the market is carried by the vector S. However, we will want to write contracts on
the realized variance of the stock price, which in itself is not a local martingale, but observable
in the market.

To allow the incorporation of additional information, we therefore assume that not necessar-
ily S = (S1, . . . , SN ) itself, but a vector Y = (S, A) is jointly Markov, where A = (A1, . . . , AM )
is a left-continuous process of finite variation. Note that A is not tradable.

We approach the issue of smoothness in section 4.2 by assuming that the mapping PS,A :
C0(RN+M ) → C0(R1+N+M

≥0 ) given as

PS(H)(t, s) := E [ H(St) | S0 = s ]

weakly preserves smoothness (cf. definition 4.3) in the sense that

PS,A(C∞
K ) ⊆ C0,1,0

(
R≥0 × RN

≥0 × RM
≥0

)

where C∞
K is the space of all smooth functions whose derivatives all have compact support. The

assumption means that the value function for very smooth payoffs is continuous and differentiable
in the S-coordinates. The latter derivatives are going to be our “deltas”.

Indeed, it is shown in theorem 4.4 that under the above assumption, the market is complete,
i.e. that all non-negative payoffs HT which are measurable with respect to FS

T can be replicated
using S, i.e. there exists a ∆ ∈ Lloc

T (S) and a H0 ∈ FS
0 such that

HT = H0 +
N∑

k=1

∫ T

0
∆k

u dSk
u .

Moreover, if the value process Ht = E [ HT | Ft ] is a C1-function h(t; St) = Ht of S, then “delta
hedging works” in the sense that

∆k
t = ∂skh(t;St) .
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These results are also discussed in Buehler/Teichmann [BT06], where we also comment on the
impact of this observation for the completeness of “infinite dimensional” models in Hilbert spaces
as those discussed in section 2.4, the first obvious result being that as long as such a model admits
an FDR in terms of tradable market instruments, then it is complete.

Complete Variance Swap Markets

The previous results can not directly be applied to our variance curve framework, because we
face infinitely many tradable variance swaps. It is therefore necessary to ensure that a finite
selection of variance swaps (and the stock) is sufficient to hedge an exotic product. This is done
in section 4.2.3.

Problem (P5)

Given the strong Markov variance curve model (G,Z, ρ), under which circumstances is the mar-
ket complete?

Theorem 4.19 shows that the market is complete if the variance curve is sufficiently invertible
and if a suitable finite set of variance swaps plus the stock price weakly preserve smoothness.
In short, “sufficiently invertible” means that the variance swap price

G(z, x) :=
∫ x

0
G(z, y) dy

can be inverted in z for a finite set of maturities which can “shift” in time. We call this property
τ -Invertibility. It is defined in definition 4.17 below.

4.2 Hedging in Complete Markets

In this section, we will prove that under relatively weak assumptions, a strong Markov variance
curve market model creates a complete market in which all exotic payoffs can be replicated by
positions in stock and a finite number of variance swaps.

Our approach is as follows: first, we shall prove with theorem 4.4 a rather general result
on complete markets where the traded assets plus some adapted processes of finite variation
(such as running variance) are Markov. In this case, the crucial condition to achieve market
completeness is “weak preservation of smoothness” (definition 4.3).

Secondly, we will assume that the parameter process Z of a variance curve model can be
recovered from observed variance swap prices by an inversion of (the integral of) the variance
curve function G and apply the results of the first step to show that any payoff in the sense
defined above can be replicated through dynamic trading in stock and variance swaps.

We start with the promised general result on complete markets in a Markovian setting.
These results are deepened and discussed further in Buehler/Teichmann [BT06].

4.2.1 General Complete Markovian Markets

Let W = (Ω,F∞,F = (Ft)t≥0,P) with a stochastic base with right-continuous, completed filtra-
tion which supports an extremal d-dimensional Brownian motion W = (W 1, . . . , W d).

In this subsection, assume that the market consists of N tradable instruments S = (S1, . . . , SN )
which are non-negative local martingales. We further stipulate that there is an M -dimensional
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left-continuous FS-adapted process A = (A1, . . . , AM ) which has finite variation such that the
joint process Y = (S, A) is a non-explosive diffusion which uniquely solves an SDE

dYt = µ(Yt) dt +
d∑

j=1

Σj(Yt) dW j
t (4.3)

for locally Lipschitz vectors µ,Σ1, . . . ,Σd.4 Evidently, Y = (S,A) is Markov. Also note that
FS = FS,A, but in the sequel, we will still write FS,A to stress that payoffs may well depend on
the values of A: this process can be used to encode information of the past into the vector (S, A).
For example, the realized variance of one of the traded assets is a left-continuous process of finite
variation.

Let X = (X1, . . . , Xm) be an arbitrary non-explosive diffusion which uniquely solves an SDE

dXt = m(Xt) dt +
d∑

k=1

νk(Xt) dW k
t .

For non-negative, measurable functions H : Rm → R≥0 define the operator

PX(H)(t, x) := E [ H(Xt) | X0 = x ] . (4.4)

Definition 4.3 (Weak preservation of smoothness) We then say that X weakly preserves smooth-
ness if there exists some T ∗ > 0 such that

PS,A(C∞
K (Rm)) ⊆ C0, ι1,...,ιm

(
(0, T ∗]× R× · · · × R

)

where we set ιi = 0 if ν1
i = · · · = ν1

i = 0 or ιi = 1, otherwise for i = 1, . . . ,m.
In other words, whenever 〈Xi〉T ∗ 6≡ 0 for some i = 1, . . . ,m, then xi 7→ PX(H)(t, x1, . . . , xm)

for t ∈ (0, T ∗] must be at least once differentiable in this coordinate. Otherwise, it is sufficient
if PX

t (H) is continuous in this coordinate.

Translated to our setup, we see that the vector Y = (S, A) weakly preserves smoothness iff

PS,A(C∞
K (RN+M )) ⊆ C0,1,0

(
(0, T ∗]× RN

≥0 × RM
)

,

i.e. if for all H ∈ C∞
K , then PS,A(H)(t, s, a) is at least once differentiable in s and continuous

in t and a.

This property is the key for completeness.

Theorem 4.4 (Completeness) If (S, A) weakly preserves smoothness, then “delta hedging works”,
i.e. the market L1

+(FS,A) is complete with respect to S.

Note that completeness is not limited up to the time T ∗, up to which weak preservation of
smoothness holds. The reason is quite simple: assume that we have shown that the mar-
ket L1

+(FS,A
T ∗ ) is complete with respect to (S, A). Then, using the Markov property and time-

homogeneity of (S, A), we have

E [ H(S2T ∗ , A2T ∗) | (S, A)T ∗ = (s, a) ] = PS,A(H)(T ∗; s, a) ,

4Extensions for the case where (4.3) holds only up to a strictly positive stopping time τ are straight forward.
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hence iterated application of the representation up to T ∗ yields a representation for all payoffs
H(S2T ∗ , A2T ∗) ∈ L1

+(FS,V
2T ∗ ). See the proof of lemma 4.9 for details.

Before we proceed, we want to state the following essential proposition which gives a sufficient
condition for weak preservation of smoothness:

Proposition 4.5 Assume that µ and Σ1, . . . ,Σd are locally Lipschitz and once differentiable
with locally Lipschitz derivatives.5 Then, the process Y weakly preserves smoothness.

The essence of the previous theorem and its proposition 4.5 is that if the coefficients of (4.3) are
sufficiently smooth, then the market L1

+(FY ) remains complete even if the volatility matrix Σ
has singularities: in fact, this matrix can be very sparse under the conditions of theorem 4.4
and it can, in contrast to standard results, become zero depending on the value of the finite
variation process A (i.e., time or an aggregated quantity such as realized variance). An non-
exotic example of such a situation would be an option whose payoff depends on a number of
stocks in the same currency which have different trading days (for example, consider a pan-
European EUR denoted basket). In such a case, the volatility matrix is singular whenever one
of the stocks is not traded.6 It is also a natural formulation in the sense that the volatility
matrix Σ and the drift µ are often smooth in the interior of the domain of the process Y .

In contrast, classical results require a parabolic PDE associated to the SDE (4.3), which
in particular means that we require as many tradable assets as we have underlying Brownian
motions. For example, Janson/Tysk [JT06] (theorem 2.7) show that

Theorem 4.6 Assume that S = (S1, . . . , Sd) solves the SDE

dYt =
d∑

j=1

Σj(t; St) dW j
t

with a continuous and locally Lipschitz matrix Σ(t; ·) which has full rank for all t ≤ T ∗. Also
assume that ‖Σ(t; x)‖ ≤ D(1 + ‖x‖) on [0, T ∗]× Rd for some constant D.

Then, PS(H)(t; y) := E [ H(St) | S0 = y ] is C0,2 for all H such that H(ST ) ∈ L1
+(FS

T ∗).
In other words, S weakly preserves smoothness.

Further results in this direction can be found in Janson/Tysk [JT04] (e.g. theorem A.13).
Note that Janson/Tysk [JT06] also specialize their result to cases where the coordinates Si

can be absorbed at the boundary, as it is the case for a CEV process.7 However, this setting
does not cover the case where the matrix Σ is only “temporarily” singular, neither does their
setting allow that the volatility of a coordinate Si becomes zero if Si > 0. In particular, it means
that over Rm

>0, there must always be as many tradeable assets as driving Brownian motions.
Here is an example of an (admittedly degenerated) “diffusion” which is not weakly preserving

smoothness:

Example 4.7 The solution to the deterministic equation

dYt = Yt1Yt≥1 dt

5Recall that Y is assumed not to explode.
6In this notation, the matrix would not be continuous in t, but this can be approximated by a tight linear

function.
7The CEV process follows the diffusion dXt = Xα

t dW 1
t and has a unique, non-explosive solution for 1/2 ≤

α ≤ 1. It is absorbed in zero for α < 1.
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is Yt = Y0 (1Y0<1 + 1Y0≥1 t). Consequently, P Y is not preserving smoothness weakly.

We begin with the proof of proposition 4.5, and will then work towards the proof of theorem 4.4
via a few lemmata.

Proof of proposition 4.5– To highlight the dependency of Y on its origin, y, we now write Y y.
Under the assumptions of the proposition, the map

y 7−→ Y y
t (ω)

is in C1 for almost all (t, ω), and there exists a continuous “derivative” process Z(y,i) =
(Z(y,i),1, . . . , Z(y,i),m) for all i = 1, . . . , m such that Z

(y,i)
t = ∂yiY

y
t almost surely. The vector

Z
(y,i)
t = (Z(y,i)

t
1, . . . , Z

(y,i)
t

m) satisfies

dZ
(y,i)
t =

m∑

k=1

Z
(y,i)
t

k



∂ykµ(Yt)dt +

d∑

j=1

∂ykσj(Yt)dW j
t



 (4.5)

(cf. Protter [P04] theorem 39, pg. 305). It is defined up to the same explosion time as Y y, which
in our current setting is infinite.8

Let now H ≥ 0 be some C∞
K function and fix some t > 0. Since ∂yiH has compact support,

say D ⊆ Rm, its support is bounded, hence the continuous function ∂yiH(Y y
t ) is bounded by

the constant K = ‖H‖∞, independently of y. Moreover, it vanishes outside D. Since Zy,i is
continuous, it is bounded on D, such that the product Z

(y,i)
t ∂yiH(Y y

t ) is bounded. Thus, the
limit of the derivative can be taken out of the expectation and we find that

∂yiP Y (H)(t; y) := E [H(Y y
t ) ]

is indeed C1 in y. Continuity in t follows from the Feller property of the diffusion Y . ¤

We now proceed with the proof of theorem 4.4 in the current diffusion setting. For more general
cases, see Buehler/Teichmann [BT06], where the conditions of proposition 4.5 are further relaxed,
too.

Lemma 4.8 Fix T ≤ T ∗ and assume S ∈ H2. If HT = H(ST , AT ) ≥ 0 for a H ∈ C∞
K such that

h(t; s, a) := E [ H(ST , AT ) | St = s,At = a ]

is C1 in its s-argument and continuous in (t, a), then ∆ = (∆1, . . . ,∆M ) with

∆k
t := ∂Skh(t; St, At) (4.6)

is an FS,V -predictable element of L2
T (S), and we have

H(ST , AT ) = H0 +
M∑

k=1

∫ T

0
∆k

t dSk
t

in L2(P) where H0 = E [H(ST , AT ) ]. The value process (Ht)t∈[0,T ] is a non-negative martingale.

8To see that (4.5) has a non-exploding solution, fix y and let τn := inf{t : ||Yt|| ≥ n}. Then, the stopped

processes Y n are bounded and so are the coefficients on the right hand side of (4.5), which in turn means that

up to each τn, z 7→ z∂yiµ(Yt) and z 7→ z∂yiΣj(Yt) are globally Lipschitz, which implies that a solution for (4.5)

exists up to each τn. Taking the limit yields that Z(i) is everywhere well-defined. See the proof of theorem 39

pg. 305 in Protter [P04] for more details.
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Proof – Since H has compact support and is continuous, it is bounded. Hence, Ht = h(t;St, At)
is a non-negative bounded martingale. For m := N + M + 1, we choose a “Dirac sequence”
ϕn : Rm → R≥0, n = 1, . . . of non-negative smooth L∞(λm)-functions with compact support
and

∫
Rmϕn(x) dx = 1 for all n. Define

hn(t; s, a) := (ϕn ? h)(t; s, a) :=
∫

RN

∫

RM

∫ T

0
h(t′; s′, a′)ϕn(t− t′, s− s′, a− a′) dt′ da′ ds′ . (4.7)

For each n ∈ N, the function hn is smooth in all m parameters and we have hn → h and
∂Skhn → ∂Skh as n ↑ ∞ in Lp(λm) for all p ∈ [1,∞). Since h is bounded, convergence also holds
for p = ∞. Hence, hn → h in L∞(λm) such that hn(t;St, At) → h(t;St, At) as n ↑ ∞ in L2(P):

E
[
(hn(t; St, At)− h(t; St, At))

2
]
≤ ‖hn − h‖2

∞ ↓ 0 .

Next, note that

hn(t; St, At)− h(0;S0, A0) =
M∑

k=1

∫ t

0
∂Skhn(u; Su, Au) dSk

u +
N∑

i=1

∫ t

0
∂Aihn(u;Su, Au) dAi

u

+
∫ t

0
∂thn(u; Su, Au) du +

1
2

M∑

k,`=1

∫ t

0
∂SkS`hn(u;Su, Au) d〈Sk, S`〉u .

We have shown before that the left hand side converges in L2(P) against the L2-martingale
h(t;St, At) − h(0;S0, A0), hence the drift terms on the right hand side of the above equation
must vanish such that

h(t; St, At)− h(0;S0, A0) = lim
n↑∞

M∑

k=1

∫ t

0
∂Skhn(u; Su, Au) dSk

u ,

where the limit is taken in L2(P). It remains to show (4.6), i.e. that the hedging ratios converge
against the hedging strategy ∆ and that it is an element of L2

T (S). To this end, let τ` := inf{t :
‖St‖2

2 + ‖At‖2
2 > `} for ` ∈ N. On {t ≤ τ`}, the process (S,A) is bounded and we have

E
[ ∫ τ`∧T

0

(
∂Skhn(u;Su, Au)− ∂Skh(u; Su, Au)

)2
d〈Sk〉u

]

≤ E

[∫ τ`∧T

0

(
sup

t,s,a:‖s‖22+‖a‖22≤`

|∂Skhn(t; s, a)− ∂Skh(t; s, a)|
)2

d〈Sk〉u
]

−→ 0 (n ↑ ∞) .

Hence, on t ≤ τ` (4.6) is satisfied. Therefore,

lim
n↑∞

∂Shn(u; Su, Au) = ∂Sh(t; St, At) =: ∆t

such that ∆ ∈ Lloc
T (S). Moreover, using our previous result that h(t; St, At) ∈ L2(P), we have

E

[
M∑

k=1

∫ t

0
(∆k

t )
2 d〈Sk〉u

]
= E

[ (
h(t;St, At)− h(0;S0, A0)

) ]
< ∞ ,

i.e. ∆ ∈ L2
T (S). Non-negativity of the value process is guaranteed by construction. ¤
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Lemma 4.9 Fix T < ∞ (possibly larger than T ∗) and assume S ∈ H2. Let H : RM+N → R≥0 be
a non-negative measurable function such that HT := H(ST , AT ) is in L2(P). Then, there exists
a ∆ ∈ L2

T (S) such that

HT = H0 +
M∑

k=1

∫ T

0
∆k

t dSk
t (4.8)

where H0 = E [HT ].
Moreover, the value process Ht := H0 +

∑M
k=1

∫ t
0∆

k
u dSk

u is a non-negative martingale.

Proof – First, assume that T ≤ T ∗.
Let m := M + N and choose again a Dirac sequence ϕn : Rm → R≥0 for n = 1, . . . of

non-negative smooth L∞(λm) functions with common compact support and
∫
Rm ϕn(x) dx = 1

for all n. Define the C∞
K functions

Hn(s, a) := (ϕn ?H)(s, a)

as in (4.7). According to the previous lemma 4.8, hn(t; s, a) := E [ Hn(ST , AT ) | St = s,At = a ]
is then C1 for all n, and we have in L2(P) the martingale representation

Hn(ST , AT ) = hn(0;S0, A0) +
M∑

k=1

∫ T

0
∂Skhn(t; St, At) dSk

t .

Since Hn → H in L∞(λn) it follows as before that the right hand side converges in L2(P).
Therefore, the vector (∂S1hn(t; St, At), . . . , ∂SM hn(t; St, At)) converges as above in L2

T (S) to
some FS,A-predictable ∆ ∈ L2

T (S) for which (4.8) above holds. Non-negativity of the value
process follows from the non-negativity of the value processes for Hn(ST , AT ).

As a next step, assume that T ∈ (T ∗, 2T ∗]. Let t := T −T ∗. Because of the Markov property
of (S, A), we have

E [ H(ST ∗+t, AT ∗+t) | ST ∗ = sAT ∗ = a ] = PS,A(H)(t; s, a)

for all t ∈ [0, T ∗]. Let us denote by Ss and Aa the processes S and A started in s and a,
respectively. Our previous results show that there is some ∆ ∈ L2

t (S
a) such that

H(Ss
t , A

a
t ) = PS,A(H)(t; s, a) +

M∑

k=1

∫ t

0
∆k

u dSsk
u .

Now observe that H2 := PS,A(H)(t; ST ∗ , AT ∗) ∈ L2(FS,A
T ∗ ), i.e. we apply again our previous

results to find that there exists some ∆′ ∈ L2
T ∗(S) such that

H2 = E
[
H2

]
+

M∑

k=1

∫ t

0
∆′k

u dSk
u .

Joining the two results yields that

H(ST ∗+t, AT ∗+t) = E [H(ST ∗+t, AT ∗+t) ] +
M∑

k=1

∫ t

0
∆̃k

u dSk
u

for the appropriate ∆̃ ∈ L2
T (S). ¤
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Lemma 4.10 Fix T < ∞ and assume S ∈ H2. Let H : (RM+N )n → R≥0 be a non-negative
measurable function such that HT := H(ST1 , AT1 ; . . . ; STn , ATn) for 0 = T0 < T1 < · · · < Tn :=
T < ∞. is in L2. Then, there exists a ∆ ∈ L2

T (S,FS,A) such that (4.8) holds.

Proof – Assume w.l.g. that T`−1 < t ≤ T`. Then, the same procedure as in the proofs for the
previous lemmata can be applied on (T`−1, T`] to the measurable function

(s, a) 7−→ E
[
H(ST1(ω), AT1(ω); . . . ; ST`−1

(ω), AT`−1
(ω);ST`

, AT`
; . . . ; STn , ATn)

∣∣ St = s, At = a
]

,

conditional on FT`−1
. ¤

Lemma 4.11 Fix T < ∞, assume S ∈ H2 and let HT ∈ L2(FS,A
T ) be non-negative. Then there

exists a ∆ ∈ L2
T (S,FS,A) such that (4.8) holds.

Proof – Chose a countable representation {ti}i∈N of Q. For all n, let Tn
i := ti for i = 1, . . . , n.

Define a complete, discrete-time filtration G = (Gn)n∈N by

Gn := σ
(
(S, A)T n

1
, . . . , (S, A)T n

n

) ∨
F0 .

As a next step, consider the discrete-time G-martingale

Hn := E [ HT | Gn ] = E
[

HT | (S, A)T n
1
, . . . , (S,A)T n

n

]
.

Each of the random variables Hn is square integrable and a function of finitely many values
of (S, A), hence lemma 4.10 yields a ∆(n) = (∆(n),1, . . . ,∆(n),M ) ∈ L2(S) such that

Hn = E [Hn ] +
M∑

k=1

∫ T

0
∆(n),k

t dSk
t .

in L2(P). The martingale (Hn)n converges in L2 to HT , hence ∆n must also converge in
L2(〈S〉 ⊗ P) to some ∆ ∈ L2(S) such that

HT = E [ H0 ] +
M∑

k=1

∫ T

0
∆k

t dSk
t ,

as desired. ¤

The following lemma essentially proves theorem 4.4.

Lemma 4.12 (Replication property of S) Let T < ∞. Assume S ∈ Hloc and let HT ∈ L1
+(FS,A

T ).
Then there exists a ∆ ∈ Lloc

T (S,FS,A) such that

HT = H0 +
M∑

k=1

∫ T

0
∆k

t dSk
t . (4.9)

for H0 = E [HT ], such that the value process Ht := H0 +
∑M

k=1

∫ t
0∆

k
u dSk

u is a non-negative
martingale.

In other words, the market FS,A is complete with respect to S.



CHAPTER 4. THEORY OF REPLICATION 58

Proof – Let
Ht := E

[
HT | FS,A

t

]
.

Now, choose a localizing sequence (τn)n such that the stopped processes S(n) and H(n) are
in L2(P), for example by setting τn := inf{t : ‖Ht‖2

2 + ‖St‖2
2 ≥ n}. Note that

H
(n)
t = Hτn∧t = E

[
HT | FS,A

τn∧t

]
= E

[
HT | FS(n),A(n)

t

]

where A
(n)
t := Aτn∧t. Hence, for each n, there exists ∆(n) = (∆(n),1, . . . , ∆(n),M ) ∈ L2

T (Sn) such
that

Hn
T = H0 +

M∑

k=1

∫ T

0
∆(n),k

t dS
(n),k
t = H0 +

M∑

k=1

∫ τn∧T

0
∆k

t dSk
t (4.10)

where we have (consistently) defined ∆t := ∆(n)
t whenever {τ > t}, i.e. ∆ ∈ Lloc

T (S). In other
words, (4.10) is just the local representation (4.9) of HT we were looking for. We also have
proved that H0 = E [ HT ] in (4.9) and that (Ht)t is a non-negative martingale. ¤

4.2.2 Pricing with Local Martingales

In the case of a strict local martingale S, the previous result is somehow surprising: it tells us
that the payoff HT = ST can be realized by charging an initial price of S∗0 := E [ ST ] which is
strictly lower than today’s value S0 of the stock S (recall that S is a supermartingale): according
to lemma 4.12, there is some unique ∆ ∈ Lloc

T (S) such that

ST = S∗0 +
∫ T

0
∆t dSt (4.11)

holds locally. But what about the obvious representation

ST = S0 +
∫ T

0
1 dSt (4.12)

which seems to hold, too? It looks as if we can lock-in a riskless profit: the strategy is to short
the asset for the gain of S0 and to invest S∗0 < S0 according to the hedging strategy (4.11).
At maturity, we have replicated the position ST via (4.11), so we are able to serve the obligation
from shorting the asset. The risk-free gain appears to be S0−S∗0 > 0. The value process of this
strategy is

Ht = (S∗0 − S0) +
∫ t

0
(∆u − 1) dSu = E [ ST | Ft ]− St .

The crucial point here is that this violates the condition that the value process must be non-
negative (or at least bounded from below) in definition 4.2. Indeed, if S is a strictly local
martingale, then9

lim
n↑∞

nP

[
sup

t∈[0,T ]
St ≥ n

]
> 0 . (4.13)

9Let τn := inf{t : St ≥ n} for all n > S0. Then, S0 = E [ Sn
T ] = nP[τn < T ] + E [ ST 1τn>T ], i.e. by monotone

convergence 0 < S0 − S∗0 = S0 − E [ ST ] = limn↑∞ nP[τn < T ] = limn↑∞ nP[supt∈[0,T ] St > n].
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Cox/Hobson [CH05] offer an intuitive description of (4.13): they point out that the above
property essentially says that the value of our short position in S will exceed all bounds with
a non-zero probability. Such a liability is clearly not feasible for a real-life financial institu-
tion. In mathematical finance, this phenomenon is often explained in terms of “doubling strate-
gies”, cf. Karataz/Shreve [KS98] example 2.3 on page 8. Such strategies are not admissible in
continuous-time arbitrage-free markets.

In general, using a local martingale as a stock price process can produce many counter-
intuitive results. For example, there will also be some strike K > 0 such that

E
[
(ST −K)+

]
< (S −K)+ ,

i.e. the price of a call is below its intrinsic value.

Remark 4.13 Cox/Hobson [CH05] show that the price S∗0 computed above is the fair price which
replicates ST under the requirement to maintain a non-negative value process.

They also discuss the price of a call under the requirement of always having a position which
exceeds the intrinsic value of a claim. (While this property is automatically satisfied if S is a
true martingale, it does not hold in the case where S is a strictly local martingale.)

4.2.3 Hedging with Variance Swaps

Theorem 4.4 is a neat result for markets of the specified form, but it can not yet be applied
directly to our variance curve framework, since the parameter process Z is not a visible variable
on the market.

We will therefore need to rephrase the results according to our previous setup. To this
end, recall that we initially aimed at using variance swaps to replicate our payoffs. The slight
complication is that we only want to use a finite number of such variance swaps.

Assume that (G,Z, ρ) is a global Markov variance curve model (cf. definition 2.22 on page 30).
Hence, the m-dimensional parameter process Z is the unique strong, non-explosive solution to

dZt = µ(Zt) dt +
d∑

j=1

σj(Zt) dW j
t

and it is consistent with the variance curve functional G, such that the SDE

dSt

St
=

√
ζt

d∑

j=1

ρj(Zt, St) dW j
t

with ζt := G(Zt; 0) has a unique strong solution S = (St)t≥0, which is a local martingale.
As discussed above, we will not attempt to replicate payoffs which are measurable with

respect to the filtration F which is generated by the underlying driving Brownian motionW .
Even though this approach is used widely in the financial literature, we rather consider the
market of relevant payoffs with payoffs whose value at maturity can be deduced by observing
the values of traded assets during the life of the contract: in our case, these are the stock price
and the variance swap prices.

For this reason, let FV = (FV
t )t≥0 be the filtration generated by the variance swaps prices, i.e.

FV
t = σ

(
Vu(T1), . . . , Vu(T`);u ≤ t; ` ∈ N; 0 ≤ T1 < · · · < T` < ∞

)
.
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This filtration describes the history of the pure variance processes. This definition is meaningful
because Vt(·) is continuous.

Let us also define FS,V := (FS,V
t )t≥0 as the market filtration jointly generated by the variance

swap prices and the stock price, i.e.

FS,V
t := FV

t

∨
FS

t . (4.14)

As in the previous section, the filtration FS,V describes what we can “see” from observing the
available tradable assets. Note, in particular, that both the quadratic variation 〈log S〉 and the
short variance process ζt = ∂−t 〈log S〉t are adapted to FS,V .

We frequently spoke of “options on variance” and “options on realized variance”. Here are
the formal definitions:

Definition 4.14 (Option on Variance) An option on variance with maturity T is a payoff HT ∈
L1

+(FV
T ).

Definition 4.15 (Option on Realized Variance) An option on realized variance HT (also called
a vanilla option on variance) with maturity T is given in terms of a measurable function H :
R≥0 → R such that

HT := H
(∫ T

0
ζt dt

)

is an option on variance.

In the case of variance swaps, our previous definition 4.2 of completeness is not wide enough:
in contrast to the setting in the previous section, we now have an infinite number of tradable
instruments available for hedging. But in practise, hedging with an infinite number of securities
is clearly not an applicable approach. The idea is that we will never want to invest in more than
finitely many variance swaps.10

Definition 4.16 (Completeness for infinitely many tradable assets) Let S = (Sı)ı∈I for I ⊆ R
be a not necessarily countable family of local martingales.

Let A ⊆ FT as above. Then, we say the market of payoffs L1
+(A) is complete with respect

to S if there exist finitely many indices ı1, . . . , ı` (dependent on T ) such that the market L1
+(A)

is complete with respect to (Sı1 , . . . , Sı`).
Completeness of a filtration A = (At)t≥0 is defined similarly.

From our previous discussion it is clear that we aim to find for all T < ∞ a finite number
of maturities T1, . . . , Tm such that we can use the respective variance swaps and the stock to
replicate our payoffs. To formalize our approach, consider the variance swap price functional

G(z; x) :=
∫ x

0
G(z; y) dy (4.15)

which computes the value of a variance swap with time-to-maturity x given the state parameter z.
This function is C2,2. The idea is to invert the mapping G : Z ⊂ Rm

≥0 → C2 in some sense. For
this, we only want to use a finite number of variance swaps and this finite selection must be
“stable” over some small time horizon.

10For a representation result with countably many martingales see Protter [P04] theorem 44 on page 189.
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For a fixed maturity T , the value of the variance swap with maturity T at time t given a
state Zt is

Vt(T ) = At +G(Zt;T − t)

where we define A as the running realized variance,

At := Vt(t) =
∫ t

0
ζs ds .

For fixed 0 < x1 < · · · < x`, define further the function G|x1,...,x`
: Z ⊆ Rm

≥0 → R`
≥0

G|x1,...,x`
(z) :=

(
G(z; x1), . . . ,G(z; x`)

)
.

Definition 4.17 (τ -Invertibility) We say that the pair G (or G) is τ -invertible if there exists
` ∈ N, τ > 0 and τ < x1 < · · · < x` such that

G|x1−t,...,x`−t : Z ⊂ Rm
≥0 −→ R`

≥0

is injective for all t ∈ [0, τ ].

The idea of τ -invertibility is that is allows us to recover the value of Z on an interval Ik :=
[kτ, (k + 1)τ) for k = 0, 1, . . . with the stock, its realized variance process and a fixed set of
variance swaps. This, in turn, can be then iterated which shows that we can actually always
recover Z = (Zt)0≤t≤T given the stock, a finite set of variance swaps and the running realized
variance. This is the subject of the following proposition:

Proposition 4.18 Assume that (G,Z) is τ -invertible. For all T < ∞, there exist a finite
number of variance swap maturities T1, . . . , TM and a function

Γ : R≥0 × RM
≥0 × R≥0 −→ Z

which is λ-almost surely C1,2,2 such that

Zt = Γ
(

t ; Vt(T1) , . . . , Vt(TM ) ; At

)
(4.16)

for t ∈ [0, T ].
Consequently, the vector (S, V̂ , A) with V̂ := (V (T1), . . . , V (TM )) is Markov.

Proof – Define on each interval Ik := [kτ, (k + 1)τ) for k = 0, 1, . . . and ` = 0, 1, . . ., the variance
swap maturities

T k
1 := kτ + x1 , . . . , T k

` := kτ + x` .

Due to τ -invertibility, we can recover Z on Ik via

Zt = G|−1
T k
1 −t,...,T k

` −t

(
Vt(T k

1 )−At , . . . , Vt(T k
` )−At

)
t ∈ Ik ,

where G|−1
x1−t,...,x`−t is C2 by the inverse function theorem.

Fix now some finite T and let K ∈ N such that Kτ ≤ T < (K + 1)τ . We can then define
M := K` variance swap maturities T1 := T 1

1 , . . . , T` := T 1
` , T`+1 := T 2

1 , . . . , TM := TK
` (which

are not necessarily distinct) and the function

Γ(t; v1, . . . , vM ; a) :=
K∑

k=0

1t∈Ik
G|−1

T k
1 −t,...,T k

` −t

(
vk`+1 − a , . . . , vk`+` − a

)
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such that Zt can be recovered on [0, T ] as required in (4.16). Also note that Γ is C2 in v, a and
piece-wise C1, i.e. λ-almost surely differentiable in t. ¤

We are now in the position to prove the central completeness result for Markov variance swap
curve market models.

Theorem 4.19 (Complete Markov Variance Curve Market Models) Assume that the vector (S,Z, A)
weakly preserves smoothness and that G is τ -invertible.

Then, the market FS,V,A is complete with respect to (S, V ).

To prove this theorem, we apply very similar ideas as in the proof for theorem 4.4. In particular,
the proof of the following lemma is nearly identical to the proof of lemma 4.8.

Lemma 4.20 For all smooth functions H ∈ C∞K , the value process Ht := E [ H(ST , ZT , AT ) | Ft ]
is given as a function

Ht = h(t; St, Zt, At)

which is C1 in S and in Zk for all those k ∈ {1, . . . , m} for which 〈Zk〉T 6= 0. W.l.g. these are
the first m0 components of the vector Z. We then have

H(ST , ZT , AT ) = H0 +
∫ T

0
∆t dSt +

m0∑

k=1

∫ T

0
νk

t dZ̃t

where

Z̃t := Zt − Ãt and Ã :=
∫ t

0
µ(Zt) dt .

The constant H0 is given as H0 := E [H(ST , ZT , AT ) ] and the Lloc(S, Z̃)-hedging ratios are

∆t := ∂Sh(t; St, Zt, At) and νk
t := ∂zkh(t; St, Zt, At)

for k = 1, . . . , m0.
As a consequence, all HT ∈ L1

+(FS,V,A) can be written as

HT = H0 +
∫ T

0
∆t dSt +

m0∑

k=1

∫ T

0
νk

t dZ̃t (4.17)

for (∆, ν) ∈ Lloc
T (S, Z̃;FS,Z).11

Proof – Let H ∈ C∞K . Then, the representation Ht = h(t; St, Zt, At) = E [ H(ST , ZT , AT ) | Ft ]
such that h is C1 in S and for all Zk where P[〈Zk〉T > 0] > 0 as stated in the lemma is just the
weak preservation of smoothness property. Using the same techniques as in lemma 4.8 and the
fact that (Ht)t is a martingale allows us to write

H(ST , ZT , AT ) = H0 +
∫ T

0
∆t dSt +

m0∑

k=1

∫ T

0
νk

t

d∑

j=1

σj
k(Zt) dW j

t

= H0 +
∫ T

0
∆t dSt +

m0∑

k=1

∫ T

0
νk

t dZ̃k
t

11Note that the set of integrands for (S, Z̃) in the representation (4.17) are predictable with respect to FS,Z ,

not necessarily with respect to the smaller filtration FS,Z̃ .
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with ∆ and ν as stated in the lemma. Now we apply the same ideas as for lemmata 4.9 to 4.12
to show that all HT ∈ L1

+(FS,Z) can be represented in the form (4.17) (Note that we do not
prove that FS,Z̃ is equal to FS,Z or FS,V,A. Although the process (S, Z̃) is extremal on FS,Z it
does not necessarily generate this filtration.)

Finally, note that FS,V,A ⊆ FS,Z since Vt(T ) = G(Zt, T − t) +
∫ t
0 G(Zs; 0) ds. ¤

We have therefore shown that we can replicate any payoff using S and Z̃. Since the latter is not
tradable, we need to replicate it by itself in order to prove theorem 4.19.

Proof of theorem 4.19– Let HT ∈ L1
+(FS,V,A

T ) such that, according to lemma 4.20,

HT = H0 +
∫ T

0
∆S

t dSt +
m0∑

k=1

∫ T

0
∆k

t dZ̃k
t

for (∆, ν) ∈ Lloc
T (S, Z̃;FS,Z). Note that because of τ -invertibility, FS,Z = FS,V,A, hence we can

assume w.l.g. that (∆, ν) ∈ Lloc
T (S, Z̃;FS,V,A).

Let now Γ and T1, . . . , TM be as in proposition 4.18. Then,

Zt = Γ (t;Vt(T1), . . . , Vt(TM );At) ,

and Itô’s formula given the fact that Z̃ is a local martingale shows that

dZ̃t =
M∑

`=1

∂v`Γ (· · ·) dVt(T`) ,

hence the market FS,V,A is complete. ¤

The following corollary identifies the form of the hedging ratios for the cases where the value
process is given as a sufficiently differentiable function of S and the relevant variance swaps.
Not surprisingly, the hedging ratios are just the derivatives with respect to the spot prices of
the market instruments.

Corollary 4.21 (Delta-Hedging with Variance Swaps) Assume that (S,Z, A) weakly preserve
smoothness and that G is τ -invertible. Moreover, assume that HT ∈ L1

+(FS,V
T ) is a payoff such

that its price process H = (Ht)t∈[0,T ] can be written as

Ht = h(t; St, Zt, At)

for some value function h which is C1 in S and Z.
Then, there exists a function ĥ such that

Ht = ĥ
(
t; St, Vt(T1), . . . , Vt(TM );At

)
(4.18)

where T1, . . . , TM are the maturities from proposition 4.18. Moreover, ht is smooth in S and the
V -arguments, such that HT can be hedged using

dHt = ∂Sĥ(· · ·) dSt +
M∑

k=1

∂Vk
ĥ(· · ·) dVt(Tk) . (4.19)
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This corollary covers both standard European options on the stock and options on variance as
defined above.

Proof – Following the proof of theorem 4.19, we simply have ĥ := h ◦ Γ. ¤

Notation 1 From now on, we will write the value function of a process Ht in terms of S and
the states Z as “h”, while we use a hat,“ĥ”, for the respective function which is parameterized
by S and the variance swaps V (T1), . . . , V (TM ).

Corollary 4.22 Given the states (S, Z), the hedging ratios given in corollary 4.21 can be com-
puted as follows: first, compute the Rm×M -matrix of coefficients

Ψt(Zt) =
(
∂ziG(Zt, Tk − t)

)
i=1,...,m;k=1,...,M

for which by assumption

d




Vt(T1)
...

Vt(TM )


 = Ψt(Zt) d




Z̃1
t
...

Z̃m
t




holds. Since Ψt(Zt) has full rank m, we find a generalized inverse Ψt(Zt)−1 ∈ RM×m and can
define the row vector




ν1
t
...

νM
t




′

:=




∂z1h(t, Vt(t);St, Zt)
...

∂zmh(t, Vt(t);St, Zt)




′

Ψt(Zt)−1 . (4.20)

Also let
∆t := ∂Sh(t, Vt(t);St, Zt) .

Then, H is replicated by

HT = H0 +
∫ T

0
∆t(t, Vt(t);St, Zt) dSt +

M∑

k=1

∫ T

0
νk(t, Vt(t);St, Zt) dVt(Tk)

with slight abuse of notation.

In the context of chapter 5 below, note that computing (4.20) is equivalent to “neutralizing
the risk” with respect to the states: indeed, assume that Ψt(Zt) and the row vector ψt :=
(∂z1h(t, Vt(t);St, Zt), . . . , ∂zmh(t, Vt(t);St, Zt)) are known.

Then,
min

v∈RM

∥∥ ψt
′ − v′Ψt(Zt)

∥∥
2

(4.21)

is minimized by some row-vector v if and only if v′ = ∂zh
′Ψt(Zt)−1 for a generalized inverse of

the matrix Ψt(Zt).
See also the discussion on “parameter-hedging” in chapter 5.
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4.2.4 Hedging in classic Stochastic Volatility Models

In this short subsection, we want to show that in sufficiently well-behaved one-factor models, we
can hedge options on variance using the variance swap with the same maturity as the option.

Corollary 4.23 Assume that Z = (ζ,A) solves

dζt = µ(ζt) dt + σ(ζt) dW 1
t

dAt = ζt dt

}

for differentiable µ and σ with locally Lipschitz derivatives.
Then,

(a) The process Z weakly preserves smoothness.

(b) The variance swap curve functional of the model, G(z; x) := E [ Ax | ζ0 = z ], is globally
invertible.

Moreover, we can replicate any payoff HT ∈ L1
+(FZ) with the variance swap with the same

maturity T as the option, i.e. there is some ν ∈ Lloc
T (V (T )) such that

HT = E [ HT ] +
∫ T

0
νt dVt(T ) . (4.22)

As before, we will denote by ζz the process ζ started in z.

Proof – First, (ζ,A) weakly preserves smoothness following proposition 4.5. As a next step, we
prove that

z 7→ G(z;x) := E
[ ∫ x

0
ζz
t dt

]

is C1, strictly increasing and therefore invertible for all x > 0.
Indeed, differentiability follows because z 7→ ζz

t is differentiable with derivative ζ(z,1) (see
equation (4.5) above), which in turn is a supermartingale. Hence,

∂zE
[ ∫ x

0
ζz
t dt

]
= E

[ ∫ x

0
ζ
(z,1)
t dt

]
.

It remains to prove that z 7→ E
[ ∫ x

0ζz
t dt

]
is strictly increasing. To this end, let z < y and let

τ := inf{t : ζz
t ≥ ζy

t }. By continuity of z 7→ ζz
t , we have τ > 0 and ζz

0 < ζy
0 . Moreover, ζz

t = ζy
t

for all t > τ . Consequently, z 7→ ∫ x
0ζz

t dt is a strictly increasing function.
Theorem 4.4 yields therefore that for all ε > 0, the market L1

+(FV
T−ε) is complete with respect

to (V (T ), A). It remains to show that this is also true for ε = 0, but this follows since we only
have to show the existence of a hedging strategy along a localizing sequence of stopping times,
which we choose as τn := T − 1/n: indeed,

Hn
t := E [ HT | Fτn∧t ] = E [ HT | ζτn∧t, Aτn∧t ]

can be replicated for all n. This yields the representation (4.22) in Lloc
T (V (T )). ¤



Chapter 5

Hedging in Practice

The previous chapter showed how we can use variance curve models to hedge exotic products
in theory: we first determine the model of choice, then we evaluate the payoff and finally we
compute the corresponding hedging ratios with respect to stock and reference instruments (the
latter being variance swaps in our models).

According to the remarks following corollary 4.22, these hedging ratios can be computed by
a simple procedure: in addition to the target product, choose a number of reference instruments
such that the sensitivities of the overall portfolio with respect to the states vanish.

In practise, however, there is another task involved: the issue of selecting appropriate pa-
rameters for the model and to protect the portfolio against changes of these parameters.

This chapter is thus devoted to this “parameter-hedging”. We start in the first section 5.1
below by introducing the concepts of “models”, “calibration” and “meta-models” before we
explain this idea. This is based on ideas from [B06b].

The following section 5.2 will then discuss how this approach can be implemented: we
describe an effective algorithm which allows the selection of a cheapest portfolio of liquid options
such that the sensitivity of the joint position of exotic payoff and portfolio to changes in states
and parameters of the model is kept within a specified tolerance. The algorithm allows imposition
of a range of reasonable market constraints such as limits on transaction sizes and overall model
error (discrepancy between market prices and model values of the liquid instruments).

In the final section 5.3, we will then show the theoretical result that meta-models based on
Heston’s model (example 3.3), the exponential-OU model (example 3.8) or the double mean-
reverting models (which are discussed in length in part III of the thesis) are not free of “dynamic
arbitrage” if the speeds of mean-reversion are not kept constant: the value processes which are
the result of instant recalibration are not local martingales. Moreover we will also introduce
entropy swaps, which we will use to show that in the particular case of Heston’s model, the
product of correlation and “volatility of variance” must also be kept constant.

Appendix A.1.2 discusses practical applications of entropy swaps and a related instrument,
gamma swaps.

5.1 Model and Market

To illustrate the ideas discussed in the later sections of this chapter, we start with a guiding
example. To this end, consider Heston’s model [H93] which is defined on a stochastic base

66
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W̄ = (Ω̄, Ā, F̄, P̄) with F̄-extremal two-dimensional Brownian motion W̄ as the solution to

dζ̄τ = κ(θ − ζ̄τ ) dt + ν
√

ζ̄t dW̄ 1
τ ζ̄0 = ζ0

dX̄t =
√

ζ̄τ d(ρW̄ 1
τ +

√
1− ρ2W̄ 2

τ )

S̄τ = S0 Eτ (X̄) .





(5.1)

This model has the states (S̄0, ζ̄0) ∈ R+ × R+
0 and the parameters χ = (κ, θ, ν, ρ) ∈ Υ with

Υ := R+3 × (−1,+1); the constant κ is called the “speed of mean-reversion”, θ is the “level of
mean-reversion”, ν is the “volatility of variance” (or “VolOfVol”) and ρ is called “correlation”.

We will often use superscripts to indicate the states and parameters of a model: for example,
S̄S0,ζ0;χ

τ (ω̄) is the value of the stock in the model given the path ω̄ ∈ Ω̄ where S̄0 := S0 and
ζ̄0 := ζ0. We will also use ξ := (ζ0, χ) to denote the configuration of the model.

However, this is just the model. Assume now that the real stock price process is a strictly
positive martingale S = (St)t≥0 defined on a different stochastic base W = (Ω,F∞,F,P) which
supports some finite-dimensional extremal Brownian motion W .

To introduce a few ideas, we also assume that a single variance swap with maturity T is
traded. Its price process in the market world is denoted by V (T ) = (Vt(T ))t≤T . In section 5.1.1
we will consider a richer market where a range of liquid options is traded.

Pricing

Assume we want to use Heston’s model above to evaluate at “market time” t = 0 some illiquid
payoff, for example a call: (

ST1 −K
)+

(5.2)

where T1 ≤ T .
This requires us to specify the state ζ0 and the parameters χ of the Heston model. For the

moment, note that the price of the liquid variance swap in Heston’s model is given as

V̆0(T ) = G(ζ0, χ; T ) := θT +
(
ζ̄0 − θ

) 1− e−κT

κ
. (5.3)

This means that once some parameters χ are specified, we can invert this function given the
market price V0(T ) to obtain ζ0. Let us therefore assume that we have indeed chosen a suitable
configuration ξ = (ζ0, χ) (we discuss below how this is usually done). Then, we can compute

H̆0 := hχ (0;S0; ζ0) := Ē
[ (

S̄ζ0,χ
T1

−K
)+

∣∣∣∣ S̄0 = S0, ζ̄0 = ζ0

]
.

We will regard this as the value of the payoff (5.2) given by our model and the configuration
ξ = (ζ0, χ). We do not call it price, because it does not necessarily reflect the cost of a replication
strategy in the real world.

Initial Hedging

According to the logic inherent in Heston’s model (cf. chapter 4), we should hedge our exposure
to the risk arising from both a change in S and in ζ. Corollary 4.22 shows that this can be done
by using the additional variance swap V (T ): first, compute the model-sensitivities of H̆0 with
respect to S and ζ,

∆̆C
0 := ∂Shχ(0;S0; ζ0) and ψ̆C

0 := ∂ζh
χ(0;S0, ζ0) .
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Now do the same with the model-price of the liquid variance swap (5.3). We obtain

∆̆V
0 := ∂SG(ζ0, χ; T ) = 0 and ψ̆V

0 := ∂ζG(ζ0, χ;T ) .

Hence, if we are short one call (5.2), we can hedge our overall exposure to (S, ζ) by buying ∆̆C
0

shares and ψ̆C
0 /ψ̆V

0 variance swaps (cf. corollary 4.22). Our overall value of the portfolio in the
model world is then

−H̆0 + ∆̆0S0 + ν̆0V̆0(T ) (5.4)

with

∆̆0 := ∆̆C
0 and ν̆0 :=

ψ̆C
0

ψ̆V
0

. (5.5)

Instantaneous Hedging

The above portfolio (5.4) is insensitive with respect to moves in S and ζ over short time-periods
in the Heston model. Assume now that at some later market time t > 0, we want to rebalance
our hedge (note that we use τ to denote model time and t to denote market time).

Since the stock and the liquid variance swap are liquidly traded, we observe the historical
path St(ω) = Su:u≤t(ω) ∈ C[0, t] of S and the path Vu:u≤t(T )(ω) of the liquid variance swap.
We now want to compute the value of the call.

Assuming we are confident in our initial parameter choice χ, we have to determine a sensible
value for the short variance ζt(ω) in the real-world. As before, we can imply ζt(ω) using (5.3)
and the historic observation 〈log St(ω)〉 (i.e. the value of the variance swap which just matured).

The new call value is given by

H̆t(ω) := hχ (t; St(ω), ζt(ω)) := Ē
[ (

S̄
ζt(ω),χ
T1−t −K

)+
∣∣∣∣ S̄0 = St(ω), ζ̄0 = ζt(ω)

]
.

Note that we have in fact evaluated a new, “shifted” payoff
(
S̄T1−t(ω̄)−K

)+
(5.6)

conditionally on S̄0 = St(ω) and ζ̄0 = ζt(ω). This concept of “shifting the payoff” will be
formalized below.

The hedge ratios ∆̆ and ν̆ can now be computed as before (5.5) instantaneously for every
time t. We obtain a portfolio value process in the market world which follows

P̆t(ω) := H̆0 +
∫ t

0
∆̆t(ω) dSt(ω) +

∫ t

0
ν̆t(ω) dVt(ω) ,

but in general
P̆t(ω) 6= H̆t(ω) .

We can write this as

H̆t(ω) = H̆0 +
∫ t

0
∆̆t(ω) dSt(ω) +

∫ t

0
ν̆t(ω) dVt(ω) + Γt(ω)

where Γ is the profit/loss process.
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It is clear that if the market behaves like a Heston model with the parameter χ, then Γ ≡ 0.
In general, however, Γ introduces swings in our profit/loss computation.1 This means that we
can not expect to hedge our exotic products perfectly. Nonetheless, the above procedure is a
natural approach if we do not know the real market dynamics. But we have omitted one crucial
detail: the determination of the parameter vector χ.

5.1.1 Additional Market Instruments

In the previous section, we have assumed that only the stock S and a single variance swap were
traded. For a fixed parameter vector χ of the Heston model, this implied that there is an unique
short variance ζ0 such that the model is consistent with the observed market data. However, in
real life markets, a full range of liquid options is usually traded.

Let us therefore fix some T > 0 and assume that in addition to S, there are d liquid options
with price processes C1, . . . , Cd quoted. These price processes are assumed to have terminal
payoffs

C`
T (ω) = C`

(
Su:u≤T (ω)

)

given in terms of Borel payoff functions

C` : C+[0, T ] −→ R+
0

for ` = 1, . . . , d.2

Definition 5.1 We define the set of all admissible payoff functions as

X :=
{
H : C+[0, T ] −→ R+

0 is Borel
}

.

Assumption 5 We assume that all traded payoffs are integrable for all configurations of our
model, i.e. that

C`
(
S̄S0,ζ0,χ

u:u≤T

)
∈ L1

+

(
P̄S0,ξ

)

for all ` = 1, . . . , d, S0 ∈ R+ and ξ = (ζ0, χ) ∈ Ξ := R+
0 ×X .

This is a very natural assumption: if we are trading in a market with liquid instruments
C1, . . . , Cd which have finite prices, a model which assigns an infinite price to one of these
instruments is clearly not a reasonable candidate to price and hedge exotic products.

Example 5.2 The payoff function H of a variance swap with maturity T1 ≤ T is given as

H(f) := 〈log f〉T1 := lim
n↑∞

n∑

i=1

(
log

f(ti)
f(ti−1)

)2

(5.7)

where τ = (τn)n∈N with τn = (0 = tn1 < · · · < tnn = T1) is a refining partition of [0, T1],
i.e. limn↑∞ supi=1,...,n |tni − tni−1| = 0.

1In appendix C.1 we show how the profit/loss process Γ can be computed in a simple stochastic volatility

framework.
2We used C+[0, T ] to denote the set of all right-continuous non-negative functions f : [0, T ] → R+

0 .
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Remark 5.3 Definition 5.1 only allows payoff functions which depend directly on the path of
the underlying stock price. In general, this excludes, for example, options on variance swaps.3

We have limited ourselves in this chapter to the above definition as a matter of convenience;
in chapter 7 we will consider payoff functions which depend on the paths of finitely many ob-
servable liquid instruments.

Shifting the Payoff

For all H ∈ X and all configurations ξ, we now define the initial value of H as

U(S0, ξ;H) := Ē
[
H

(
S̄S0,ζ0,χ

u:u≤T

) ∣∣∣ S̄0 = S0, ζ̄0 = ζ0

]

(which might be infinite). At some later time t > 0 the stock price has already moved along
a path St(ω) := Su:u≤t(ω) ∈ C+[0, t], we therefore need to generalize the shifting of the payoff
which we introduced above (5.6). To this end, we define the “gluing operators”

θω
t : f ∈ C+[0, T ] 7−→ θt(f) ∈ C+[0, T ]

by
θω
t (f)(x) := St(ω)(x)1x<t + f(x− t)1x≥t

for x ∈ [0, T ]. The operator θω
t “glues” f right-continuously at the end of St(ω) (note that the

values of f past T − t are ignored).
The idea is to use θω

t to shift the realized path St(ω) in front of the model stock price
S̄ = (S̄τ )τ≥0: indeed, we have

θω
t

(
S̄u:u≤T (ω̄)

)
(x) = Sx(ω)1x<t + S̄x−t(ω̄) (5.8)

for ω̄ ∈ Ω̄.
We can therefore use our abstract concept of a payoff H as an element of X by defining the

shifted payoff function Ht(ω) ∈ X via

Ht(ω) := H ◦ θω
t : C+[0, T ] −→ R+

0 .

This shifted payoff allows us to compute the model-price of the payoff function H given the
configuration ξ = (ζ, χ) at some time t > 0 as

U(St(ω), ξ;Ht(ω)) = Ē
[
Hω

t

(
S̄S0,ζ,χ

u:u≤T

) ∣∣∣ S̄t(ω) = S0, ζ̄0 = ζ
]

.

Example 5.4 Let us again consider the case of a variance swap with maturity T1 which has the
payoff function H(f) := 〈log f〉T1 defined in (5.7).

(a) A time t = 0 and given some ξ0 = (ζ0, χ), we simply have

U(S0, ξ0;H) = Ē
[ ∫ T1

0
ζ̄ζ0,χ
τ dτ

]
= G(ζ0, χ; T1)

where G is defined in (5.3).
3In contrast to realized variance, the price of a variance swap is not measurable with respect to the filtration

generated by the stock price unless the stock price itself already constitutes a complete market.
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(b) At some later time t ∈ (0, T1), assume we have determined a new short variance ζt(ω) and
set ξt(ω) := (ζt(ω), χ).

The value of the variance swap for t ∈ [0, T1] is now

U
(
St(ω), ξt(ω);Ht(ω)

)
= 〈log St(ω)〉t + Ē

[ ∫ T1−t

0
ζ̄ζt(ω),χ
τ dτ

]

= 〈log St(ω)〉t +G
(
ζt(ω), χ; T1 − t

)
.

This is the actual realized variance of S up t in the market, 〈log St(ω)〉t, plus the remaining
expected remaining variance up to T1 in the model given a short variance of ζ̄0 := ζt(ω).

(c) At maturity T1, the value of the payoff is just

U
(
ST1(ω), ξT1(ω);HT1(ω)

)
= 〈log ST1(ω)〉T1 ,

i.e. indeed the realized variance of the stock.

Calibration and Recalibration

At this point, we can formalize the concept of a “model” beyond the example of Heston:

Definition 5.5 A model U is a continuous map

U : R+ × Ξ×X −→ R+
0

(S0, ξ,H) 7−→ U(S0, ξ;H)

which is differentiable in S0 and ξ (the set Ξ is assumed to be an open subset of RK). Each
index ξ is called a configuration of the model.

Remark 5.6 Commonly, we assume that U(S0, ξ; ·) is a price system, i.e.

(a) It is linear.

(b) It is positive.

(c) U(S0, ξ; c) = c for all constants c ∈ R+
0 .

We do not need these assumptions here. See, however, Föllmer/Schied [FS04] for more details.

With definition 5.5 at hand and with the example of Heston’s model in mind, we now assume
again that we want to evaluate a payoff H ∈ X . In contrast to the initial example in the previous
section, we now need to determine a configuration vector ξt(ω) ∈ Ξ at all times t from the traded
market prices C1, . . . , Cd. To this end, define the vector

U(St(ω), ξ;Ct(ω)) :=
(

U(St(ω), ξ;C1
t (ω)), . . . , U(St(ω), ξ;Cd

t (ω))
)

.

for all ξ ∈ Ξ.
A natural configuration at time t is the calibrated configuration vector

ξ∗t (ω) := argminξ∈Ξ

∥∥∥ Ct(ω)− U(St(ω), ξ;Ct(ω))
∥∥∥
∗

, (5.9)
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where ‖ · ‖∗ is a suitable norm.
The program (5.9) formalizes the idea of using the observed market data to imply optimal

states and parameters of a model (we assume that the algorithm which solves (5.9) yields a
unique solution).4 If this is exercised instantaneously at every time t, the above calibration
program will yield an F-adapted configuration process ξ∗ = (ξ∗t )t∈[0,T ] which can be used to
compute the “instantaneously recalibrated” value process

H̆∗
t (ω) := U

(
St(ω), ξ∗t (ω);Ht(ω)

)

of the exotic payoff H. However, the user may not wish to recalibrate the model too frequently
(in the real world, truly instantaneous hedging is infeasible). Indeed, any F-adapted process
ξ = (ξt)t∈[0,T ] can be used to define a value process for the exotic payoff H. The resulting map
between payoffs and value processes is what we want to call the “meta-model” of the institution:

Definition 5.7 The meta-model of the institution based on the model U and the configuration
process ξ is the map

U : (t,H) 7−→ U
(
St, ξt;Ht

)
.

From corollary 4.22 we deduce:

Proposition 5.8 If the market dynamics are given as a particular configuration ξ0 of the model,
and if the market L1(FS

T ) is complete with respect to (S,C1, . . . , Cd) for the parameter vector χ,
then

H̆t(ω) := U(St(ω), ξt(ω);Ht(ω)) .

with ξ defined by (5.9) for an ‖ · ‖2-equivalent norm ‖ · ‖∗ is the unique fair price process of H
in the market.

In general, however, this does not hold. While the underlying model such as Heston’s is
usually free of arbitrage in itself,5 the value process generated by the meta-model may well
exhibit “dynamic arbitrage” in the following sense:

Definition 5.9 (Dynamic Arbitrage) We say U is free of dynamic arbitrage if there exists an
equivalent measure Q ≈ P under which all value processes for all admissible payoffs are local
martingales.

If the meta-model U∗ exhibits dynamic arbitrage in the sense above, then there exists a
self-financing trading strategy in admissible payoffs which has no or negative initial cost, which
produces a P-almost surely non-negative payoff and which has a non-zero P-probability of actu-
ally being positive.

In section 5.3, we will show that a meta-model based on Heston’s model or on one of the models
introduced in sections 3.1 or 3.2 is not free of dynamic arbitrage if the speeds of mean-reversion
are not kept constant.

4Even though a numerical minimization routine will usually only return a local minimum, such a numerical

solution usually still depends deterministically on the input data and is therefore unique.
5See Föllmer/Schied [FS04] for details on price systems and absence of arbitrage.
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5.2 Parameter Hedging in Practise

In practise, it is difficult to assess whether a meta-model exhibits dynamic arbitrage (indeed, it
probably does), but this is not our main concern. Even if we accept that the value process H̆ is
not a true price process, the main question is how we can minimize our exposure to the risk of
a change of the configuration vector.

Indeed, recall (5.5) where we computed the hedging ratios for the stock price sensitivity and
the sensitivity of the payoff with respect to ζ using corollary 4.22. This approach made sense
because Heston’s model is complete if we hedge the risks of a payoff with respect to stock and
short variance. However, we still apply it even though we do not expect the market to move
exactly according to Heston’s dynamics.

The heuristic idea is that if Heston’s model is “close” to the true dynamics, then the hedging
ratios will be reasonably good, too (appendix C.1 provides an example of the impact of a wrongly
specified stochastic volatility model).

The idea of “parameter-hedging” is now to implement the same “hedge” for all elements of
the configuration vector, not only the states.6

Parameter-Hedging

For t ∈ [0, T ], let
Ψ̆t :=

(
∂ξkU(St, ξt;C`

t))
)

`=1,...,d;k=1,...,K

be the Rd×K matrix of sensitivities of the model values of the market instruments with respect
to the configuration vector ξ = (ξ1, . . . , ξK).

Also compute the row-vector of sensitivities of the value of H with respect to the configura-
tion,

ψ̆t :=
(

∂ξ1U(St, ξt;Ht)), . . . , ∂ξKU(St, ξt;Ht))
) ∈ RK .

Let now Ψ̆−1
t ∈ RK×d be a generalized inverse of Ψ̆t. Just as in corollary 4.22 for the states,

define now the d-dimensional row-vector

ν̆t := ψ̆t Ψ̆−1
t ,

which will as usual be a solution to

argminν∈RK

∥∥∥ ψ̆′t − ν ′Ψ̆t

∥∥∥
2

(5.10)

(the introduction of a weighted norm is straight-forward). As a result, the portfolio

−H̆t +
d∑

`=1

ν`
t C̆

`
t + ∆̆tSt

with

∆̆t := ∂S

(
U(St), ξt;Ht)−

d∑

`=1

νk
t ∂SU(St, ξt;C`

t)

)

6In fact, the distinction between states and parameters can be blurred: what happens, for example, in Heston’s

model if the “volatility of variance” ν is zero and ζ̄ becomes a deterministic function of time? What if moreover,

θ = ζ0, in which case Heston’s model degenerates to Black&Scholes’ constant volatility model?
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has L2-minimal exposure to any change of the configuration and is insensitive to any change in
the stock price.

We will now discuss how a relaxed version of (5.10) which also takes into account additional
real-life constraints can be implemented.

5.2.1 Constrained Parameter-Hedging in Practise

Without loss of generalization, we consider problem (5.10) at time t = 0.
We are given a vector of market prices C0 = (C1

0 , . . . , Cd
0 ) of liquid options with payoffs

(C1, . . . ,Cd). Their model prices are given by C̆`
0 ≡ C̆`(ξ) for all ` = 0, . . . , d.

We also have an admissible payoff H with initial value H̆0 ≡ H̆(ξ). The aim is to construct a
portfolio of liquid options such that the combined position of H and this portfolio has minimal
sensitivity to the configuration values ξ.

Remark 5.10 We disregard the stock sensitivities here since we assume that all liquid instru-
ments are traded delta-neutral, i.e. with the associated initial delta hedge.7

We adopt the notation from above: The matrix of derivatives of C̆ with respect to ξ is
denoted by

Ψ̆ :=




∂ξ1C̆1 · · · ∂ξK C̆1

...
. . .

...
∂ξ1C̆d · · · ∂ξK C̆d


 ∈ Rd×K .

and the vector of sensitivities of H̆ is

ψ̆ :=
(

∂ξ1H̆, . . . , ∂ξK H̆
)
∈ RK .

Unconstrained Optimization

In case we are just interested in some solution to our problem, we can define as above

ν̆simple := ψ̆ Ψ̆−1 ∈ Rd

where Ψ̆−1 ∈ RK×d denotes a generalized inverse of Ψ̆.8 If Ψ̆ has not full rank, then ν̆simple will
be the orthogonal projection of ψ̆ onto the spaces spanned by Ψ̆, hence an L2-optimal fit: the
position

−H̆ +
d∑

k=1

ν̆k
simple C̆k (5.11)

has L2-minimal possible exposure to changes in ξ.
However, this approach will yield quite an arbitrary hedging portfolio. Usually, we have

many traded options which are available at very different costs (in the form of bid/ask spreads
i.e. transaction costs) and which have very different sensitivities to ξ. It is clear that under such

7Otherwise, we run the same program as described here with ξ̂ = (S0, ξ) and Ĉ = (S0, C
1, . . . , Cd).

8Consider a singular value decomposition Ψ̆ = UDV T for orthogonal U ∈ RK×K , V ∈ Rd×d and a diagonal

matrix D ∈ Rd×K . Then,

Ψ̆−1 := V D−1UT

is a generalized inverse of Ψ̆ (D−1 ∈ RK×d is a diagonal matrix where D−1i
i is equal to 1/Di

i if Di
i > 0 or zero

otherwise).
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circumstances an unconstrained “blind” minimization like the one above is not a very useful
solution (for each subset of m options for which the sensitivity matrix has full rank we can find
a corresponding position ν1, . . . , νm such that (5.11) has zero sensitivity to the configuration
vector).

Moreover, we may not require total elimination of the sensitivities of our portfolio. A cer-
tain exposure might be acceptable: assume, for example, that our position at some t has zero
sensitivities to the configuration. If the market moves just a little, this state will be lost and
we are exposed to some configuration risk. However, it is often too expensive to immediately
rebalance the hedging portfolio: we would rather prefer to keep the sensitivity of the position
in an acceptable region, and to obtain the cheapest hedging portfolio which allows this.

Portfolios under Constraints

Indeed, there are a couple of useful constraints when we try to find appropriate portfolio weights
ν̆ = (ν̆1, . . . , ν̆d). We denote by

O(ν̆)(ξ) := −H̆(ξ) +
d∑

k=1

ν̆k C̆k(ξ)

the value function of the respective overall portfolio.

(a) Risk constraints: For each ξk, we want to specify a “tolerance” τk ≥ 0 such that the
exposure to this configuration value does not exceed τk:

|∂kO(ν̆)| ≤ τk . (5.12)

(b) Position constraints: We want to avoid too large transactions sizes. Hence, we assume
there are L` ≤ 0 ≤ U ` such that

L` ≤ ν̆` ≤ U ` . (5.13)

(c) Model error constraint: Additionally, we want to ensure that the overall pricing error
(mismatch between model prices and market prices for the liquid instruments) does not
exceed a certain absolute bound ε,

∣∣∣∣∣
d∑

`=1

(
Ck − C̆k

)
ν̆k

∣∣∣∣∣ ≤ ε . (5.14)

An extension to the sum of the absolute values or the supremum of all differences is also
possible.

Finally, we assume that in order to buy or sell one of the liquid instruments C = (C1, . . . ,Cd), we
have to pay proportional transaction costs c = (c1, . . . , cd) ∈ (R+)d. Hence, the cost of building
our hedging-portfolio is

Π(ν̆) :=
d∑

`=1

c|ν̆d| . (5.15)

Problem:
Find the weights ν which minimize (5.15) under the constraints (a) - (c).
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This can be achieved using a linear programming algorithm. To this end, note that the standard
form of an LP program we consider here is given as

minimizew∈Rq w′c

l ≤ Aw ≤ u

}
(5.16)

where c ∈ Rq is called the “cost vector”, where A ∈ Rp×q is a matrix and where l, u ∈ Rp are
the constraints with −∞ ≤ li ≤ ui ≤ ∞ for i = 1, . . . , p. Such a problem can be solved very
efficiently, see for example Fang et al. [FP93].

We will now show that our problem can be translated into this form:

(a) Risk constraints:
To see that the risk-constraints (a) are linear in ν̆, we use a standard trick in linear
programming: add the slack variables s1, . . . , sK which will represent

sk = ∂kO(ν̆) .

To enforce this equality, we add the k = 1, . . . , K linear constraints

∂kH̆ = −sk + ∂kC̆
1ν̆1 + · · ·+ ∂kC̆

dν̆d .

To enforce (5.12), we then also add the constraint

−τk ≤ sk ≤ τk .

(b) Position Constraints
These are already linear.

(c) Model error constraint
Inequality (5.13) is also implemented by using a slack variable, say u, which will represent
the sum of the differences above. Indeed, the constraint

0 = −u + (C1 − C̆1)ν̆1 + · · ·+ (Cd − C̆d)νd

and the additional constraint
−ε ≤ u ≤ ε

implement together (5.13).

(d) Optimization Target
Since a standard LP algorithm tries to find an optimal vector x with respect to some
cost-vector

x′c = x1c1 + · · ·+ xdcd ,

we need to introduce appropriate slack variables x` ≥ 0, which will represent |ν`|. To this
end we impose the constraints

0 ≤ x` − ν` and 0 ≤ x` + ν` .

As a result, we will optimize over the expression

x′c

instead of ν ′c.
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This gives us a linear programming problem of the form (5.16) for the vector

w′ = ( ν1, . . . , νK ; s1, . . . , sK ; u; x1, . . . , xd ) ,

which will be optimized along

c′ = ( 0, . . . , 0; 0, . . . , 0; 0; c1, . . . , cd) .

The matrix A and the vectors l and u can be obtained from the above remarks.

Remark 5.11 The above program minimizes investment costs given a sensitivity constraint.
This formulation has the advantage of a very clear meaning for all involved constraints and
costs.

However, a similar program can be developed which minimizes the sum of the sensitivities
given a cost constraint. However, it is not clear to us how the different sensitivities can be scaled
in a natural way such that a minimization of the sum of the sensitivities makes economic sense.

5.3 Dynamic Arbitrage

We now come to the issue of dynamic arbitrage in the meta-model of the institution following
definition 5.7 of page 72. Recall that dynamic arbitrage was defined as a value process of an
admissible payoff which is not a local martingale under any local martingale measure equivalent
to the market measure P (cf. definition 5.9).

We will now again consider Heston’s model as introduced in (5.1) on page 67:

dζ̄τ = κ̄(θ̄ − ζ̄τ ) dt + ν̄
√

ζ̄t dW̄ 1
τ ζ̄0 = ζ0

dX̄t =
√

ζ̄t d(ρ̄W̄ 1
τ +

√
1− ρ̄2W̄ 2

t )

S̄τ = S0 Eτ (X̄) .





(5.17)

Its configuration vector is ξ = (ζ0;κ, θ, ν, ρ). We already know from example 3.3 on page 38 that
the shape of the variance swap curve function

G(z; x) := z2 + (z1 − z2)e−z3x . (5.18)

of this model (with z1 = ζ0, z2 = θ and z3 = κ) implies that there is no consistent diffusion
Z = (Z1, Z2, Z3) ∈ Ξ on any stochastic base such that the forward variance

G(Zt;T − t)

is a local martingale.
Indeed, it also true that there is no continuous semi-martingale at all such that Z3 is random.

To this end, assume that Zi = M i + Ai where M i is a local martingale on the market space W
and where Ai is of finite variation. Note that as before

dG(Zt;T − t) = −∂xG(Zt;T − t) dt

+∂zG(Zt;T − t) (dMt + dAt)

+
1
2
∂2

zzG(Zt; T − t) d〈M〉t ,
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which once more implies that

∂xG(Zt;T − t) dt = ∂zG(Zt; T − t) dAt +
1
2
∂2

zzG(Zt; T − t) d〈M〉t
must hold P × λ-almost sure if G(Zt;T − t) is to be a local martingale. In case of (5.18), this
means that

−Z3
t (Z1

t − Z2
t )e−Z3

t x dt = −x(Z1
t − Z2

t )e−Z3
t xdA3

t

+x2(Z1
t − Z2

t )e−Z3
t xd〈M3〉t

+(· · ·)e−Z3
t xdt

where the terms in (· · ·) do not contain the parameter x. This implies first 〈M3〉t ≡ 0 and then
dA3

t ≡ 0, hence that Z3 is constant. The same arguments also apply for a few other models
introduced in chapter 3:

Proposition 5.12 A meta-model based on a model which has a polynomial-exponential variance
curve functional (section 3.1) or an exponential mean-reverting curve functional (example 3.8)
must have constant exponents to be free of dynamic arbitrage.

Additionally, we will now prove:

Proposition 5.13 (Dynamic Arbitrage in Heston’s Model) The meta-model based on Heston’s
model (5.1) is not free of dynamic arbitrage if the speed of mean-reversion, κ̄, is not constant.
The same is true if the product ρ̄ν̄ is not constant.

This requires the introduction of what we want to call an entropy swap. This concept is also of
interest on its own; indeed, a close relative to the entropy swap, called “gamma swap” is now
offered by several banks (see appendix A.1). The proposition is eventually proved on page 81.

5.3.1 Entropy Swaps

An entropy swap is a payoff very closely related to a variance swap. Under the assumption of
Markovianity of (Z, S), an entropy curve functional similar to the variance curve functional will
allow us to derive additional conditions on the possible volatility and correlation structure of a
model.

The results will be put to use in the discussion of example 5.21 to show that the product of
“volatility of variance” and correlation in the Heston model must remain constant.

Definition 5.14 (Entropy Swap) The payoff of an entropy swap with maturity T < ∞ is
∫ T

0
St d〈log S〉t . (5.19)

We denote its price by

Ut(T ) := E
[ ∫ T

0
St d〈log S〉t

∣∣∣∣ Ft

]
.

Remark 5.15 The payoff (5.19) is an approximation for the discretely sampled payoff

d

n

n∑

i=1

Sti

S0

(
log

Sti

Sti−1

)2

where 0 = t0 < · · · < tn = T ; compare equation (1.1) on page 10.
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Remark 5.16 (Gamma Swap) In practise, gamma swaps are more popular than entropy swaps.
If the forward curve of the underlying is constant, the two products coincide, but in general they
are slightly different.

Their relation is discussed in more detail in appendix A.1.2, where we also show how both
entropy swaps and gamma swaps can be replicated using traded European options. An example
term sheet for a gamma swap is provided on page 144.

Definition and basic Properties

Let St := Et(X) be a true martingale with short variance ζ, i.e.Xt :=
∫ t
0

√
ζs dBs for some

W-Brownian motion B.
Then, the stock price measure

PS [A] := E [ St1A ] for A ∈ Ft

cf. (2.15) is equivalent to P. Consequently,

Ut(T )
St

= ES

[ ∫ T

0
ζs ds

∣∣∣∣ Ft

]
(5.20)

is a PS-martingale. Equation (5.20) rightly suggests that U(T ) can be interpreted as a variance
swap under PS (this is proved in appendix A.1.3).

Define the forward entropy swap curve u = (u(T ))T≥0 as

ut(T ) := E [ ST ζT | Ft ] (5.21)

such that

Ut(T ) =
∫ T

0
ut(s) ds .

We also set
wt(T ) :=

ut(T )
St

(5.22)

which is a PS-martingale for all finite T .
The name “entropy swap” is explained as follows: under the measure PS , the process B̃t =

Bt −
∫ t
0

√
ζs ds is a Brownian motion. Hence

log
ST

St
=

∫ T

t

√
ζs dB̃s +

1
2

∫ T

t
ζs ds , (5.23)

so ES [
∫ T
0 ζs ds|Ft] = 2ES [log ST /St|Ft]+

∫ t
0ζs ds = 2/St E[ST log ST /St|Ft]+

∫ t
0ζs ds, which shows:

Proposition 5.17
Ut(T )

St
− Ut(t)

St
= 2E

[
ST

St
log

ST

St

∣∣∣∣ Ft

]
. (5.24)

The entropy swap price U0(T ) measures the entropy of PS with respect to P.
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Compatible Entropy Curve Functionals

Assume that (G, Z, ρ) is a strong MVCMM as in definition 2.22. As in equation (2.24), we define
the Brownian motion

Bt :=
n∑

j=1

∫ t

0
ρj(Zs, Ss) dW j

s ,

the short variance ζt := G(Zt; 0) and the stochastic logarithm of S,

Xt :=
∫ t

0

√
ζs dBs .

Note that the process (Z, S) remains Markov under PS , with dynamics of Z given by

dZt = µρ(Zt, St) dt +
n∑

j=1

σj(Zt) dW̃ j
t (5.25)

and with adjusted drift

µρ
i (z, s) := µi(z) +

√
G(z; 0)

n∑

j=1

ρj(z, s)σj
i (z) . (5.26)

According to proposition 2.10, equation (5.25) has a unique, non-explosive solution.
We have seen that w defined in (5.22) is a PS martingale. Due to Markovianity of (Z, S),

we here have
wt(T ) = H(Zt, St; T − t) (5.27)

for an entropy curve functional

H(z, s; x) := ES [ G(Zx; 0) | Z0 = z, S0 = s ] . (5.28)

In general, we may wish to start with G and H to find a pair (Z, ρ) such that all processes are
well-defined. We precise this idea as follows:

Definition 5.18 (Entropy Curve Functional) An entropy curve functional H on an open set
Z ⊂ Rm is a positive C2,2,2 function H : Z ×R+×R+

0 → R+
0 such that

∫ T
0 H(z, s; x) dx < ∞ for

all T < ∞.

Definition 5.19 (Compatible Entropy Swap Functionals) An entropy curve functional H is called
compatible with a consistent pair (G,Z) if there exists a correlation function ρ such that (G,Z, ρ)
is a strong MVCMM and such that equation (5.28) is satisfied P× λ|R+

0
-almost surely.

Note that then in particular H(z, s; 0) = G(z; 0).

Because wt(T ) = H(Zt, St; T − t) is a martingale under PS for all finite T , we have similar to
theorem 2.24:

Theorem 5.20 (HJM-condition for Entropy Swaps) If H is compatible with (G,Z), then

∂xH(z, s;x) = µρ(z, s) ∂zH(z, s; x) + 1
2σ2(z) ∂zzH(z, s; x)

H(z, s; 0) = G(z; 0)

}
. (5.29)

The adjusted drift µρ is given in (5.26).
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While we will use the previous theorem to constrain the possible dynamics of G, entropy swaps
could also be used to infer additional information from the market. Indeed, the computations
in section A.1.2 imply that we can infer the product of correlation and “volatility of variance”
for a Heston model from the market.

Heston’s Entropy Swap Functional

Under PS , the short variance in Heston’s model (5.17) follows the SDE

dζ̄t =
(
κ̄θ̄ − (κ̄− ν̄ρ̄) ζ̄t

)
dt + ν̄

√
ζ̄t dW 1

t
S

= (κ̄− ν̄ρ̄)
(

κ

κ̄− ν̄ρ̄
θ̄ − ζ̄t

)
dt + ν̄

√
ζ̄t dW 1

t
S

= c̄
( κ̄

c̄
θ̄ − ζ̄t

)
dt + ν̄

√
ζ̄t dW 1

t
S

where WS is a PS-Brownian motion and with c̄ := κ̄ − ν̄ρ̄. This is just a square-root diffusion
with new mean-reversion speed and a new mean-reversion level. Hence, the price of an entropy
swap in Heston’s model is

ES [ ζx ] =
κ̄

c̄
θ̄ +

(
ζ̄0 − κ̄

c̄
θ̄
)

e−c̄x .

Example 5.21 (Heston’s Entropy Swap Functional) Let G be as in example 3.3 on page 38 and
let

H(z;x) =
κ

z3
z2 +

(
z1 − κ

z3
z2

)
e−z3x . (5.30)

Then, z3 is a constant and we must have µ1(z) = κ(z2−z1), σ1(z)ρ(z) = (z3−κ)
√

z1, µ2(z) = 0
and σ2(z)ρ(z) = 0.

Proof – We have seen in example 3.3 that µ1(z) = κ(z2 − z1) and µ2(z) = 0. Since also
G(z; 0) = H(z; 0) = z1, theorem 5.20 implies that we have to match

∂xH(z;x) = µρ(z) ∂zH(z; x) +
1
2
σ2(z) ∂zzH(z; x) (5.31)

where

µρ
i (z) := µ(z) +

√
z1

n∑

j=1

σj
i (z)ρj(z)

for i = 1, . . . , 3.
However, (5.31) has the same structure as an exponential-polynomial functional G. Therefore

we can conclude immediately that Z3 is a constant.
Consequently, (5.30) degenerates to example 3.3 i.e.

µρ
1(z) = z3

(
κ

z3
z2 − z1

)
and µρ

2(z) = 0 .

Combining the results yields the assertion. ¤

Proof of proposition 5.13– Since our previous results have already shown that κ̄ must be constant
in the meta-model, it follows that the product ρ̄ν̄ must be constant if we want to avoid dynamic
arbitrage. ¤
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Chapter 6

A variance curve model

In this third part of the thesis we will discuss a concrete strong variance curve market model
which is based on example 3.5. The model described here has been developed to price options on
variance in particular: it tries to model the movement of the term structure of forward variance
such that complex exotic options on variance such as options on forward variance swaps can be
priced and hedged reliably.

If we propose a new model, we have to ensure first that it is properly defined and second
that it can be put to use efficiently in practise. The first point means that we will check that
the model actually defines a true martingale stock price process. Practicability is essentially
equivalent to the ability to price and, often more challenging, calibrate the model to observed
market data.

We begin with the formal definition of the model and the theoretical discussion. In sec-
tion 6.2, we will then develop an efficient Monte-Carlo scheme which can be used to price exotic
options. It is also used in the calibration which is discussed in chapter 7.

6.1 The Model

For x ∈ R, y ∈ [12 , 1] and ε > 0 define

xy,ε := (x+ + ε)y − εy . (6.1)

This function is globally Lipschitz, vanishes in ε and is smooth on [0,∞) with first deriva-
tive ∂xxy,ε = y(x+ + ε)y−1. In particular, ∂xxy,ε|x=0 = εy−1 is finite. Figure 6.1 shows a few
example curves for this function.

The variance curve model we propose is specified as follows: It is has the initial states

z = (ζ0, θ0,m0)

and the parameter vector

χ := (κ, c; µ, ν, η; α, β, γ; m̄; ρv, ρm, ρθ, ρv,θ) . (6.2)

We call µ, ν, η ∈ R≥0 “ShortVolOfVol”, “LongVolOfVol” and “InfVolOfVol”. The initial levels
ζ0, θ0,m0 ∈ R>0 are referred to as “ShortVar”, “LongVar” and “InfVar”, while m̄ ∈ [0,m0) is
called “InfVarFloor” and α, β, γ ∈ [12 , 1] are named “ShortTwist”, “LongTwist” and “InfTwist”.
The reversion speed κ ∈ R>0 is called “ShortRevSpeed” and c ∈ R>0 is called “LongRevSpeed”.
We also fix a floor ε > 0, which we regard as constant, hence it is not a parameter.
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The volatility function a floor of 0.0001
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The volatility function for a floor of 0.01
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Figure 6.1: The function x 7→ (x+ + ε)y − εy for a floor ε of 0.0001 and 0.01.

The process Z = (ζ, θ,m) is then the unique strong solution to the SDE

dζt = κ(θt − ζt) dt + νζα,ε
t dŴ ζ

t

dθt = c(mt − θt) dt + µθβ,ε
t dŴ θ

t

dmt = ηmγ,m̄
t dŴm

t





(6.3)

starting in (ζ0, θ0,m0) where m0 > m̄ ≥ 0. We impose the following correlation structure in
terms of a four-dimensional driving Brownian motion W :

Bt = W 1
t

Ŵ ζ
t = ρζBt + ρ̂ζW

2
t

Ŵ θ
t = ρθBt + ρ̂θ

(
rζ,θW

2
t + r̂ζ,θW

3
t

)

Ŵm
t = ρmBt + ρ̂mW 4

t ,





(6.4)

where we have used the convention ρ̂ :=
√

1− ρ2. We call ρζ , ρθ, ρm ∈ (−1, 0] “ShortCorre-
lation”, “LongCorrelation” and “InfCorrelation” and rζ,θ ∈ (−1, +1) “ShortLongCorrelation”.
The associated stock price is as usual given as

St := Et(X) , Xt =
∫ t

0

√
ζs dBs . (6.5)

The variance curve functional G of this model is exactly (3.7) in example 3.5 on page 39 with
z = (ζ0, θ0,m0):

G(z; x) := m0 + (ζ0 −m0)e−κx + (θ0 −m0)

{
κ

κ−c (e−cx − e−κx) (κ 6= c)

κx e−κx (κ = c)
(6.6)

The model has the intuitive description of a curve which is described by a short-term factor ζt,
a medium range factor θt and an infinite horizon factor mt. Its variance swap price function
G(z, x) :=

∫ x
0G(z; y) dy is

G(z; x) = m0x + (ζ0 −m0)
1− e−κx

κ
+ (θ0 −m0)





κ
κ−c

(
1−e−cx

c − 1−e−κx

κ

)
(κ 6= c)

1−(1+κx)e−κx

κ (κ = c)
(6.7)
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Figure 6.2: Fitting the variance curve (6.7) to market data. It generally fits well, even if the market
experiences massive disruptions, as we can see in the example of the .N225 index (from Monday, January
16th 2006, to Wednesday the .N225 dropped by nearly 7% which in return drove up the prices of short
term variance swaps). All graphs show “variance swap volatilites”, cf. (1.2).

and has a suitable range of possible shapes: figure 3.1 shows a few calibrated curves (see also
graphs on page 40). Moreover, figure 6.3 illustrates the impact of changing (ζ0, θ0,m0; κ, c) for
the example of the FTSE curve. It shows how each of the states ζ, θ and m is responsible for a
different part of the deformation of the curve.

The model is designed to capture the term-structure movements of the variance swap market
prices, and thereby to allow pricing and hedging particularly of options on realized variance.
For these products, the model describes with the “forward” of the underlying (realized variance)
the natural hedging instrument.

Of course, the model can also be used to hedge other volatility-dependent products such as
forward started options, but the lack of a “stochastic skew” parameter makes it more suited for
the aforementioned products. Note, however, that such a “stochastic skew” could be introduced
by making the correlation structure a function of the parameters1 We will not discuss this
approach here.

Remark 6.1 The process m will hit zero and will be absorbed there if either γ > 0 or m̄ > 0.
Hence, we will typically assume that γ = 1, m̄ = 0.

Correlation

Before we discuss existence and uniqueness, we want to write the correlation structure (6.4) in
a more convenient way. Indeed, definition (6.4) above has been chosen because the involved

1The state of the respective new coordinate of Z could be inferred from market data using entropy swaps.
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Figure 6.3: The impact of changes of the parameters to the curve calibrated to FTSE market data on
January 11th, 2006; the top left graph recalls the fit to the market. The calibrated values for the FTSE
are given in table 7.1 on page 121.

quantities have an intuitive meaning for the user and can be explained more easily. However,
for ease of notation we shall henceforth consider the following mapping W 7→ (Ŵ ζ , Ŵ θ, Ŵm, B),
which is equivalent to (6.4) in distribution.

Ŵ ζ
t := W 1

t

Ŵ θ
t := ρζ,θW

1
t + ρ̂ζ,θW

2
t

Ŵm
t := ρζ,mW 1

t + %θ,mW 2
t +

√
1− ρ2

ζ,m − %2
θ,mW 3

t

Bt := ρζW
1
t + %θW

2
t + %mW 3

t +
√

1− ρ2
ζ − %2

θ − %2
mW 4

t ,

(6.8)
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where we used
ρζ,θ := 〈Ŵ ζ , Ŵ θ〉1 = ρζρθ + rζ,θρ̂ζ ρ̂θ

ρζ,m := 〈Ŵ ζ , Ŵm〉1 = ρζρm

ρθ,m := 〈Ŵ θ, Ŵm〉1 = ρθρm

%θ,m := (ρθ,m − ρζ,θρζ,m)/ρ̂ζ,θ

%θ := (ρθ − ρζρζ,θ)/ρ̂ζ,θ

%m := (ρm − ρζρζ,m − %θ%θ,m)/
√

1− ρ2
ζ,m − %2

θ,m .

(6.9)

By making use of
%B :=

√
ρ2

ζ + %2
θ + %2

m

we can write the Brownian motion B as

Bt = %BB1
t + %̂BB2

t

in terms of the independent Brownian motions

B1
t :=

1
%B

(
ρζW

1
t + %θW

2
t + %mW 3

t

)
and B2

t := W 4
t .

6.1.1 Existence, Uniqueness and the Martingale Property

Theorem 6.2 The above model is a strong Markov Variance Curve Market Model.

Before we prove this this statement, we will need to introduce the notion of a process Lipschitz
operator, which is used in the comparison theorem 54 from Protter [P04], pg. 324, which will
we cite below. We denote by Dn the space of n-dimensional adapted right continuous processes
with left limits.

Definition 6.3 (Process Lipschitz) We call an operator F : Dm → D1 process Lipschitz, if for
all X, Y ∈ Dm the following holds:

(a) For all stopping times, Xτ = Yτ implies Fτ (X) = Fτ (Y ).

(b) There exists an adapted, left continuous process with right limits K such that

‖F (X)t − F (X)t‖ ≤ Kt ‖Xt − Yt‖ .

We need a less general formulation:

Definition 6.4 (Parameter Lipschitz) We call a continuous function α : R`×Rm :→ R param-
eter Lipschitz if there exists some continuous function x 7→ k(x) such that

‖α(x; y1)− α(x; y2)‖ ≤ k(x) ‖y1 − y2‖ . (6.10)

We call the function α monotonic parameter Lipschitz if, additionally, ` = 1 and if x 7→ α(x; y)
is strictly increasing.
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Lemma 6.5 Let α be parameter Lipschitz and assume that γ be a R`-valued diffusion. Then,

F (·) ≡ α(γ; ·)

is process Lipschitz.

Proof – Set indeed F (X)t := α(γt; Xt). Item (a) of definition 6.3 is satisfied by construction.
Item (b) in turn is satisfied if we set Kt := k(Xt) with k from (6.10). Note that (Kt)t is contin-
uous. ¤

Theorem 6.6 (Comparison theorem for random coefficients) Let F 1, F 2 and H1, . . . , Hd be pro-
cess Lipschitz functionals such that F 1

t (x) > F 2
t (x) for all x. Let X and Y be the solutions of

dXt = F 1
t (X) dt +

d∑

j=1

Hj(X)t dW j
t

dYt = F 2
t (Y ) dt +

d∑

j=1

Hj(Y )t dW j
t .

If X0 ≥ Y0, then P[∃t > 0 : Xt 6> Yt] = 0, in other words X strictly dominates Y .

For a proof, see Protter [P04], pg. 324. We need a simplification which follows directly from
lemma 6.5. We state it for the purpose of reference below.

Corollary 6.7 Let α be monotonic parameter Lipschitz and let b1, . . . , bd be Lipschitz. Assume
that γ1 and γ2 are one-dimensional diffusions and let X and Y solve

dXt = α(γ1
t ; Xt) dt +

d∑

j=1

bj(Xt)t dW j
t (6.11)

dYt = α(γ2
t ; Yt) dt +

d∑

j=1

bj(Yt) dW j
t . (6.12)

We then have

• If X0 ≥ Y0 and γ1 > γ2 almost surely, then P[∃t ∈ [0, τ ] : Xt 6> Yt] = 0, in other words X

strictly dominates Y .

• If X0 ≥ Y0 and γ1 ≥ γ2 almost surely, then P[∃t ∈ [0, τ ] : Xt 6≥ Yt] = 0, in other words X

dominates Y .

With these preparations, we are now ready to prove theorem 6.2:

Proof of theorem 6.2– The proof is split up into in several steps.

Existence and Uniqueness
Using (6.8), we can write the SDE for Z = (ζ, θ, m) as

dZt = µ̃(Zt) dt + σ(Zt) dWt
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with

µ̃(z) :=




κ(θ − ζ)
c(m− θ)

0


 (6.13)

and

σ(z) =




νζα,ε 0 0
µ1θ

β,ε µ2θ
β,ε 0

η1m
γ,m̄ η2m

γ,m̄ η3m
γ,m̄


 (6.14)

where we defined
µ1 := µρζ,θ ,

µ2 := µ
√

1− ρ2
ζ,θ ,

η1 := ηρζ,m ,

η2 := η%θ,m ,

η3 := η
√

1− ρ2
ζ,m − %2

θ,m .

Since α, β, γ ∈ [12 , 1] and ε, m̄ > 0 (or γ = 1 and m̄ = 0), it is clear that both µ̃ and σ are
globally Lipschitz, such that a unique strong non-explosive solution Z of (6.3) indeed exists
(cf. [P04] theorem7 pg. 264).

Non-Negativity of Z

Let m′ be the solution to
dm′

t = η(m′
t)

γ,m̄ dŴm
t

starting in m′
0 = 0. The solution is easily seen to be m′ ≡ 0. Hence, mt ≥ 0 by monotony. Next,

let θ′ be the solution to
dθ′t = −cθ′t dt + µ(θ′)β,ε dŴ θ

t (6.15)

again starting in θ′0 = 0. Let then α(x; y) := c(x − y), such that ‖α(x, y1) − α(x, y2)‖ =
‖cy1 − cy2‖ = c ‖y1 − y2‖, i.e. α is monotonic parameter Lipschitz. We now obtain θt ≥ 0 by
applying corollary 6.7 to the diffusions m and 0.

The same argument is used for ᾱ(x; y) := κ(x− y) and the diffusions θ and 0 to prove that
we also have ζ ≥ 0.

Remark 6.8 If m̄ = 0 and γ = 1, then we have in fact ζ > 0 and θ > 0.

Martingale-Property of v

We have to show that v with vt(T ) := G(Zt; T − t) is a martingale. We will actually show that
it is a square-integrable martingale. Let

U(t) :=

{
κ

κ−c

(
e−ct − e−κt

)
(κ 6= c)

κt e−κt (κ = c)
. (6.16)

Since (G,Z) are consistent, v(T ) is a supermartingale which satisfies

dvt(T ) = dG(Zt; T − t) = e−κ(T−t)νζα,ε
t dŴ ζ

t

+U(T − t)µθβ,ε
t dŴ θ

t

+
(
1− e−κ(T−t) − U(T − t)

)
ηmγ,m̄

t dŴm
t .
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According to corollary 1.25 in Revuz/Yor [RY99] it is sufficient to show that the quadratic
variation of v(T ) has finite expectation for all finite t ∈ [0, T ]. It is therefore sufficient to show
that Z = (ζ, θ,m) is square-integrable.

To this end, recall that if some process Y solves an SDE

dYt = b(Yt) dt +
d∑

j=1

σj(Yt) dW j
t

with Lipschitz b and σ1, . . . , σd for which there exists a constant K such that ‖b(x)‖2
2+

∑d
j=1 ‖σj(x)‖2

2 ≤
K(1+‖x‖2

2), then YT ∈ L2(P) for all T < ∞, see Karatzas/Shreve [KS91] theorem 2.9, page 289.
This is the case for our model, hence the vector Z is in L2(P).

Martingale Property of S

We will prove that ζ does not explode under the measure PS associated with the stock which
implies that S is a true martingale, see proposition 2.10 on page 24. We adopt a method which
is based on the proof of theorem 10.2.1 in Stroock/Varadhan [SV79] pg. 254.

(a) Under PS , the process Z = (ζ, θ,m) has on t < τ the dynamics

dZt = µ̃ρ(Zt) dt + σ(Zt) dWS
t

where WS is a PS-Brownian motion and where

µ̃ρ(z) :=




κ(θ − ζ) + ρζνζα,ε
√

ζ

c(m− θ) + ρθµθβ,ε
√

ζ

ρmηmγ,m̄
√

ζ


 . (6.17)

Recall G from (6.6). The first derivatives are given as

∂ζG(z, t) = e−κt ,

∂θG(z, t) = U(t) and

∂mG(z, t) = 1− e−κt − U(t)

(6.18)

with U as defined in (6.16). The second derivatives ∂2
zzG(z; t) of G vanish. By construction,

∂tG(z; T − t) + µ̃(z)∂zG(z; T − t) +
1
2
σ2(z) ∂2

zzG(z;T − t) = 0 .

(b) The partial first derivatives (6.18) are non-negative: while this is clear for the first two
derivatives, we show that 1− e−κt − U(t) ≥ 0, too:

First assume κ > c.

(κ− c)
(
1− e−κt − U(t)

)
= κ− c− (κ− c)e−κt − κ

(
e−ct − e−κt

)

= k − c + ce−κt − κe−ct

= κ(1− e−ct)− c(1− e−κt) ≥ 0 .

For κ = c, we have

1− e−κt − U(t) = 1− (1 + κt)e−κt ≥ 0 .

Finally, if κ < c, then also

(c− κ)
(
1− e−κt − U(t)

)
= (c− κ)

(
1− e−κt

)
+ κ(e−ct − e−κt) ≥ 0 .
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(c) Because the correlation factors ρζ , ρθ and ρm are non-positive, we get

µ̃ρ(z)∂zG(z; T − t) = µ̃(z)∂zG(z; T − t)

+ ρζνζα,ε
√

ζ e−κ(T−t)

+ ρθµθβ,ε
√

ζ U(T − t)

+ ρmηmγ,m̄
√

ζ (1− e−κ(T−t) − U(T − t))

≤ µ̃(z)∂zG(z; T − t) .

Hence,

LG(z, T − t) := ∂tG(z; T − t) + µ̃ρ(z)∂zG(z;T − t) +
1
2
σ′σ(z) ∂2

zzG(z; T − t) ≤ 0

is non-positive.

(d) Let τn := inf{t : ||Zt||2 ≥ n} for n ∈ N and set Zn
t := Zt∧τn . On t ≤ T ∧ τn, we have

dG(Zn
t ; T − t) = LG(Zn

t , T − t) dt + ∂zG(Zn
t ; T − t) σ(Zn

t ) dWS
t .

Since Zn is bounded and the volatility term is locally bounded (i.e. bounded on compact
intervals) in its z-argument, the expectation of the stochastic integral vanishes.

Hence,

G(Z0; T ) = ES

[
G(Zn

T ; T − {T ∧ τn})−
∫ T∧τn

0
LG(Zn

t , T − t) dt

]

≥ ES [G(Zn
T ;T − {T ∧ τn}) ]

= ES [G(Zn
T ;T − τn)1τn≤T + G(Zn

T ; 0)1τn>T ]

≥ ES
[
G(Zn

T ; T − τn)1τn≤T/2

]

(∗)
≥ ES

[
IG(n)1τn≤T/2

]

= IG(n) PS [ τn ≤ T/2 ]

with

IG(n) := inf
{

G(z;T − t)
∣∣∣ (z, t) such that t ∈ [0, T/2] and ‖z‖2 = n

}
.

Inequality (∗) follows because ‖Zn
T ‖2 = n on {τn ≤ T}.

In the final step, note from (6.6) that

lim
n↑∞

IG(n) = ∞ .

Whence
lim
n↑∞

PS [ τn ≤ T/2 ] = 0

must hold to satisfy IG(n) PS [ τn ≤ T/2 ] < ∞ above.

Completeness
Proposition 4.5 on page 53 applies, hence the model weakly preserves smoothness. Moreover,
the functional G is τ -invertible for any 0 < τ < x1 < x2 < x4.

This concludes the proof. ¤
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Remark 6.9 We have proved that the non-positivity condition on the correlation parameters ρζ ,
ρθ and ρm is sufficient to ensure that S is a true martingale.

Necessity has not been shown and is not true in general, as reduction to Heston via ν = µ = 0
and c = 0 shows. However, in the multi-factor case, we are not aware of a conceptually straight-
forward framework such as the Feller test on explosion, which can be employed for the classic
one-factor stochastic volatility case.

Lewis discusses this approach in his book [L00] and it is applied to a range of stochastic
volatility models in Andersen/Piterbarg [AP04].

6.2 Pricing

The model (6.3) is a high-dimensional model for which we are not aware of closed form pricing
formulas for options other than variance swaps. Given the relatively high dimensionality of the
model, the only generic pricing method at our disposal is Monte-Carlo. Of course, the related
PDE for the model (6.3) can be derived but such high-order systems cannot, to the best of our
knowledge, be solved efficiently yet.

A relatively efficient Monte-Carlo scheme for our model can be implemented as we will show
below. One reason is that we have imposed Lipschitz-continuity on the volatility functions of the
parameters and so we can employ a Milstein-scheme with better convergence properties than the
Euler scheme. In contrast, this can not be applied to Heston’s model because of the particular
shape of the volatility coefficient of the short variance in this model. Another advantage of our
model is that the readily available variance swap prices can be used as efficient control variates.

All the following schemes will discretisise the process (S, ζ, θ,m) on a set 0 = t0 < · · · <

tM =: T of dates. We let ∆ti := ti+1 − ti. We will use simple indices i instead of ti to
indicate approximated values. So, ζM is the approximated value of ζT . We also assume that
Y = (Yi)i=1,...,M is an iid-sequence of 4-dimensional normal variables with mean zero, covariance
zero and variance ∆ti for i = 1, . . . ,M .

Correlation Structure

The correlation structure (6.4) of the model will be implemented using (6.8) as explained above;
recall the definitions in (6.9).

∆Ŵ ζ
i := Y 1

i

∆Ŵ θ
i := ρζ,θY

1
i +

√
1− ρ2

ζ,θY
2
i

∆Ŵm
i := ρζ,mY 1

i + %θ,mY 2
i +

√
1− ρ2

ζ,m − %2
θ,mY 3

i

∆Bi := %B∆B1
t +

√
1− %2

BY 4
i

(6.19)

with
∆B1

i :=
1

%B

(
ρζY

1
i + %θY

2
i + %mY 3

i

)
.

The sequence (B1
i )i=1,...,M is a normal sequence (with mean zero and variance ∆ti), which is

independent of the sequence (Y 4
i )i=1,...,M .

The advantage of the above structure is that the sub-matrix of the first three rows and
columns can be isolated, so the variance process can be simulated independently of the stock
price with only three normals per interval.
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The key observation is indeed that

Xt
d= X1

t + X2
t (6.20)

with

X1
t := %B

∫ t

0

√
ζs dB1

t −
1
2
%2

B

∫ t

0
ζs ds (6.21)

and

X2
t =




√
(1− %2

B)
∫ t

0
ζs ds


B2

t −
1
2
(1− %2

B)
∫ t

0
ζs ds (6.22)

where B2 is independent from (ζ, θ, m, B1).
Hence, if the payoff depends on S only on a few of the dates ti (which is typically the case),

we can considerably reduce the number of normals we need to generate by simulating only X1

at all time-steps. The process X2 can then be simulated with “big jumps”. Moreover, we will
see that we can avoid simulating X2 alltogether when we price European options.

All this is discussed below.

6.2.1 Pricing General Payoffs using an unbiased Milstein Monte-Carlo Scheme

The Euler-scheme for (6.3) reads

ζi+1 − ζi = κ(θi − ζi)∆ti + νζα,ε
i ∆Ŵ ζ

i

θi+1 − θi = c(mi − θi)∆ti + µθβ,ε
i ∆Ŵ θ

i

mi+1 −mi = ηmγ,m̄
i ∆Ŵm

i

Xi+1 −Xi =
√

ζ+
i ∆Bt − 1

2ζ+
i ∆ti





(6.23)

(here, we use xy,ε := (x+ + ε)y − εy which is equal to the function defined above (6.1) as long as
the processes are not negative).

The stock price itself is given as Si := eXi and need only be computed for dates ti where the
product depends on the stock price level (writing S as the exponential of X has the advantage
that it can never get negative). The last equation for m can be altered for the common case
γ = 1 and m̄ = 0, i.e. if m is a geometric Brownian motion: as for the stock we would then
simulate log mi+1 − log mi = η ∆Ŵm

i − 1
2η2 ∆ti which, by taking the exponential, ensures that

m is strictly positive.
Moreover, if any of ν, µ or η is zero, we can omit the simulation of the respective random

numbers: the time consumed by the generation of these numbers with standard methods as
described in Press et al. [PTVF02] can easily dominate the speed of the scheme above, so it is
important to reduce the number of normals generated if possible.

The Euler-scheme is a robust approach but also of rather poor convergence. It also has a
bias for each of the variables X, ζ, θ, m. We therefore improve upon (6.23) by using an unbiased
Milstein scheme.

We first review the classical Milstein scheme.
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Milstein scheme

The Euler-scheme (6.23) is of strong order 0.5 according to Kloeden/Platen [KP99] chapter 10.2.
It can be improved by using the Milstein scheme (chapter 10.3 in [KP99]): for a general SDE

Ut = U0 +
∫ t

0
a(s; Us) ds +

d∑

j=1

∫ t

0
bj(s; Us) dW j

s (6.24)

with U ∈ Rm and correlated d-dimensional Brownian motion W , the quality of convergence is
dominated by the error of the approximation of the stochastic integral. The idea is therefore to
improve the accuracy of the approximation of the b(s;Us)dWs term using

bj(t;Ut) = bj(0;U0) +
m∑

i=1

∫ t

0
∂uib

j(s; Us) dU i
s + (· · ·) dt

(6.24)
= bj(0;U0) +

d∑

`=1

(
m∑

i=1

∫ t

0
b`
i(s; Us)∂uib

j(s; Us)

)
dW `

s + (· · ·) dt

=: bj(0;U0) +
d∑

`=1

∫ t

0
βj,`(s; Us) dW `

s + (· · ·) dt

≈ bj(U0) +
d∑

`=1

βj,`(0;U0) W `
t

where we have set βj,`(t, u) :=
∑m

i=1 b`
i(t;u)∂uib

j(t; u). We obtain

∫ T

0
bj(t; Ut)dW j

t ≈ bj(0;U0)W
j
T +

d∑

`=1

βj,`(0;U0)
∫ T

0
W `

t dW j
t . (6.25)

The Milstein scheme for (6.24) is now given as

Ui+1 − Ui = a(ti; Ui)∆ti +
d∑

j=1

bj(ti; Ui) ∆W j
t +

d∑

j,`=1

βj,`(ti; Ui)I`,j(i)

where I`,j(i) :=
∫ ti+1

ti
W `

t dW j
t . These mixed stochastic integrals I`,j are generally not easy to

simulate accurately except for the case ` = j where we simply have
∫ T

0
W `

t dW `
t =

1
2
((W `

T )2 − T )

(cf. [KP99] chapter 10.3). In our case, the mixed terms b`
i(0; U0)∂uib

j(0;U0) for ` 6= j of the
variance process (ζ, θ,m) are zero so we can implement the following scheme efficiently:

ζi+1 − ζi = κ(θi − ζi)∆ti + νζα,ε
i ∆Ŵ ζ

i + 1
2ν2ζ̄α,ε

(
(∆Ŵ ζ

i )2 −∆ti

)

θi+1 − θi = c(mi − θi)∆ti + µθβ,ε
i ∆Ŵ θ

i + 1
2µ2θ̄β,ε

i

(
(∆Ŵ θ

i )2 −∆ti

)

mi+1 −mi = ηmγ,m̄
i ∆Ŵm

i + 1
2η2m̄γ,m̄

i

(
(∆Ŵm

i )2 −∆ti

)





(6.26)

where we used the notation

x̄y,ε := y
(x+ + ε)y − εy

(x+ + ε)1−y
.
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This function is well-defined for all x ∈ R≥0 since ε > 0 (the idea does not work for Heston’s
model since the above function is not defined in zero for y = 1

2 and ε = 0). We obtain a strong
order 1 scheme for the variance process. Figure 6.4 shows the improved convergence for the
pricing of a call.

Impact of using the Milstein scheme on the price of an 1y ATM Call (spot at 100)
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Figure 6.4: The price of an 1y ATM call with Euler and Milstein, respectively. We can clearly see the
improved convergence with the Milstein scheme.

Bias reduction

The above discretization scheme naturally has a bias: the expectation of θM for example is

E [ θM ] = m0 + (θ0 −m0)
M−1∏

i=0

(1− c∆ti)

which differs from the theoretical result

θT = m0 + (θ0 −m0)e−cT .

A similar problem obviously appears for ζ. Note that this will happen regardless of the volatility
structure of the processes: in particular, if the “VolOfVol” terms of all variables ζ, θ and m are
zero we still have a discretization error even though model (6.3) just reduces to a log-normal
stock price model.

This is a general drawback of discretization methods, but it is of particular importance here
because we want to use the analytical variance swap prices as control variates: for this, we have
to ensure that the Monte-Carlo scheme actually converges to those prices.

To this end, note that θt is given as

θt = m0 + (θ0 −m0)e−ct + µ

∫ t

0
e−c(t−s)θβ,ε

s dŴ θ
s . (6.27)
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If we now use the drift above instead of the discretization used in (6.26), then the estimator for
θ will be unbiased.2 We extend the idea to ζ, where

ζt = G(ζ0, θ0,m0; t) + ν

∫ t

0
e−c(t−s)ζα,ε

s dŴ ζ
s . (6.28)

with G defined in (6.6).
As before, we will improve the convergence of the stochastic integral term by applying the

Milstein scheme (6.25). The exponential term e−c(t−s) in the volatility terms drops out of the
relevant expressions and we obtain the same volatility coefficients as in (6.26).

The scheme we shall employ is

ζi+1 = G(ζi, θi,mi; ∆ti) + νζα,ε
i ∆Ŵ ζ

i + 1
2ν2ζ̄α,ε

(
(∆Ŵ ζ

i )2 −∆ti

)

θi+1 = mi + (θi −mi)e−c∆ti + µθβ,ε
i ∆Ŵ θ

i + 1
2µ2θ̄β,ε

i

(
(∆Ŵ θ

i )2 −∆ti

)

mi+1 −mi = ηmγ,m̄
i ∆Ŵm

i + 1
2η2m̄γ,m̄

i

(
(∆Ŵm

i )2 −∆ti

)
.





(6.29)

Note that E[∆Ŵ ·
i + ((∆Ŵ ·

i )
2 −∆ti)] = 0, which shows that this scheme is indeed unbiased.

In summary, the model (6.3) can reasonably efficiently be simulated using (6.29) for the
variance. Figure 6.5 shows the result of removing the bias.

Simulating X

Let now T := {τ1, . . . , τK} ⊂ {t1, . . . , tM} be the dates where the payoff explicitly depends on
S. Also set τ0 = 0. We simulate for all t1 < · · · < tM the process Z using (6.20). Additionally,
we also simulate

Vt :=
∫ t

0
ζs ds and X1

t := %B

∫ t

0

√
ζs dB1

s −
1
2
%2

B

∫ t

0
ζs ds .

See also (6.21) and the correlation structure defined in (6.19). Using an unbiased Euler-scheme,
we approximate ∫ ti+1

ti

ζt dt ≈ E
[ ∫ ti+1

ti

ζt dt

∣∣∣∣ Zti

]
= G(ζi, θi,mi;∆ti) ,

where G is the variance swap price function (6.7). We then set

X1
i+1 −X1

i =

√
%2

B

G(ζi, θi, mi;∆ti)
∆ti

∆B1
i −

1
2
%2

BG(ζi, θi,mi;∆ti)

Vi+1 − Vi = G(ζi, θi,mi;∆ti)
2In the affine case β = 1/2 and ε = 0, we can exploit that the variance of θ is known to be:

µ2

Z t

0

e−2c(t−s)E
h√

θs
2
i

ds = µ2

Z t

0

e−2c(t−s) �m0 + (θ0 −m0)e
−cs� ds

= µ2m0
1− e−2ct

2c
+ µ2(θ0 −m0)

e−ct(1− e−ct)

c

In this case, using

θt ≈ m0 + (θ0 −m0)e
−ct + µ

r
m0

1− e−2ct

2c
+ (θ0 −m0)

e−ct(1− e−ct)

c
Ŵ θ

t

is also moment-matching the second moment. This is useful when we want to simulate a Heston-type model.

However, for general β or ε > 0 this is not applicable.
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Figure 6.5: The error in variance swap volatilities
√

V0(T )/T when used with the biased scheme (6.26).
In contrast, the terminal data set (which is labeled “unbiased”) was computed using (6.29) with just one
step per year.

Assume now that we need to know the value of the stock price for some τk = ti > 0. Let
τk−1 = tj and compute

X2
i −X2

j =
√

(1− %2
B)

(
Vi − Vj

)
Y 4

i −
1
2
(1− %2

B)
(
Vi − Vj

)

such that we get
Xi = X1

i + X2
i .

The stock price is accordingly given by

Si := expXi .

The above construction ensures that Si and the expected realized variance of S are unbiased.

Weak Approximations

In Kloeden/Platen [KP99], it is discussed that we actually do not really need to use standard
normal increments Y in (6.19) for the simulation of Z. Instead, we can use a sequence of
iid-variables which match the first and second moment of the Brownian path. In particular,
we can use independent binary variables (Y 1

i , . . . , Y 3
i ) which are ±1 with probability p = 1/2

for each coordinate (the stock price random variable should remain normal if we discretizise
it only at the dates τ1, . . . , τK). It is far quicker to simulate such binary variables; also see
Bruti Liberati/Platen [BLP04].3

In such a simulation, the solutions converge in distribution, or weakly. Since the scheme (6.29)
will have to be implemented on a reasonably fine time-grid anyway, such an approach is very
useful if we want to price structured products; in practise, however, it is advisable to start

3Given that we will take big steps with Y 4, we recommend to use proper normal variables for that variable.
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with normal increments for the first few steps to ensure that the resulting paths have sufficient
variance.

6.2.2 Control Variates

From our experience, among the most powerful tools to improve the convergence of a Monte-
Carlo scheme is the use of control variates. A good reference on the subject is Glasserman [Gl04].

The general idea is as follows: suppose we want to compute the expectation of some square-
integrable random variable X with values in R on some probability space. We are not able
to compute the true expectation x := E [X ], but we can compute an unbiased approximation
xN by use of some Monte-Carlo scheme with N paths. Such an approximation will converge
to a normal with mean x and variance Var[X]/N by the law of large numbers. Therefore, the
efficiency of the estimation can be improved if variance can be reduced.

Assume that there is another square-integrable variable Y with values in Rd, for which we
know the vector y := E [ Y ] analytically (in the model (6.3) this will be the expected stock price
and prices of variance swaps). On the other hand, we can also use our Monte-Carlo scheme to
compute an approximated price vector yN .

The general idea is now that if Y and X are “close”, it should “reduce the variance” (un-
derstood as “uncertainty”) if we instead approximate the value of

Z := X −
d∑

i=1

%iY
i ,

where % is some suitable vector.
Then, a new approximation for x can be computed using

x̃N := zN +
d∑

i=1

%iy
i

where, as we recall, yi is the analytically known expectation of Y i. This new approximation is
obviously more efficient if the variance of Z is lower than the variance of X. We have

Var[X−
d∑

i=1

%iYi] = Var[X]− 2
d∑

i=1

%iCov[X,Yi] +
d∑

i,j=1

%i%jCov[Yi, Yj] .

This is obviously minimized if % is the vector

% := Cov[Yi, Y]
−1

Cov[X, Y] .

In other words, instead of pricing X with the Monte-Carlo scheme, we only price the “orthogo-
nal” part of X with respect to Y .4

In general, of course, we will not know % analytically. However, it can be estimated using
standard estimators from the same path which is used to compute xN and yN . For example,

XY i
N :=

1
N

N∑

j=1

X̂j,N Ŷ i
j,N

Cov[X, Yi]N :=
1

N − 1




N∑

j=1

X̂j,N Ŷ i
j,N −XY i

N




4The quotes around “orthogonal” should alert that orthogonality and zero correlation are only the same if X

and Y are jointly Gaussian.
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where we have denoted by X̂j,N the simulated value of X in the jth simulation for j = 1, . . . , N .

In (6.3), a natural control variate is the stock price itself with E [St ] = 1, but also the variance
swap prices V0(T ) := G(Z0; T ), which are quick to compute. It is better to use the integrated
prices V0(T ) than the expected forward variances v0(T ) since the price of most products depend
far more on the former variable: the instantaneous variance is of little effect, while the integrated
variance is a good measure of the width of the distribution of the returns of the stock price.

Indeed, another useful control variate is given if we use the deterministic variance V0(T )
and integrate it over the Brownian motion B. This yields a Black&Scholes geometric Brownian
motion for which we can compute a wide range of option prices which can be used as control
variates (an extensive range of such B&S price formulas is provided in [BFGLMO99]).

6.2.3 Pricing Options on Variance

Recall the definitions on page 60: an option on realized variance was a European payoff on the
realized variance, while an option on variance was a general integrable payoff measurable with
respect to the observation of the variance swap prices.

We are interested in particular in the payoff assembled in example 1.3 in the introduction:
standard vanilla options on realized variance,

(
1
T

∫ T

0
ζs ds−K2

)+

and
(

K2 − 1
T

∫ T

0
ζs ds

)+

,

or the respective options on realized volatility,



√
1
T

∫ T

0
ζs ds−K




+

and


K −

√
1
T

∫ T

0
ζs ds




+

.

All these products can be priced with the methods described above without simulating the
stock price. The obvious control variates are the prices of variance swaps or forward started
variance swaps. As discussed in chapter 4, these swaps are then also used to hedge the exposure
to the variance risk.

Another interesting type of payoffs are options on variance swaps, for example a call on a
variance swap (

VT1(T1, T2)
T2 − T1

−K2

)+

(6.30)

where Vt(T1, T2) := Vt(T2)− Vt(T1) denotes the forward variance swap between T1 and T2 > T1.
The option settles at time T1 and pays the positive difference between the price at time T1 of
the forward variance swap and the strike.

The pricing of such payoffs is also straight-forward in the current framework, because
at time T1, the price of the forward variance swap between T1 and T2 is simply given as
VT1(T1, T2) := G(ZT1 ;T2 − T1). See also the discussion in section 7.5.4 and the example compu-
tations there.

6.2.4 Pricing European Options on the Stock

When we want to price European options, we also do not need to simulate X itself. This is
because by conditioning, equation (6.20) on page 93 shows that

XT = X1
T + X2

T
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with

X1
T = %B

∫ T

0

√
ζs dB1

s −
1
2
%2

B

∫ T

0
ζs ds

and

X2
T =




√
(1− %2

B)
∫ T

0
ζs ds


 B2

t −
1
2
(1− %2

B)
∫ T

0
ζs ds

where B2 is independent of (B1, ζ, θ, m). By conditioning, we can therefore compute the price
of a call as

E
[
(ST −K)+

]
= E

[
eX1

T

(
eX2

T −Ke−X1
T

)+
]

= E
[

eX1
T BS

(
(1− %2

B)
∫ t

0
ζs ds; Ke−X1

T

) ]

where
BS(V, k) := N (d+)− kN (d−) (6.31)

with
d± := − log(k)√

V
± 1

2

√
V

is the Black-Scholes call price function. Hence, to compute the call price in our model, we only
need to price the payoff

eX1
T BS

(
(1− %2

B)
∫ t

0
ζs ds; Ke−X1

T

)

This technique reduces the variance of the price considerably (we removed one source of un-
certainty). Additionally, we can use control variates for the variance process to ensure quick
convergence of the variances. This is shown in figure 6.6 where we compare the unbiased Milstein
scheme above with the method described above, where we also used the Black&Scholes calls on
the equity as control variates (we used the variance given by the model’s variance swap prices).
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Plain unbiased Milstein
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Figure 6.6: Comparison of the plain unbiased Milstein scheme to compute a European call price with
the method discussed in section 6.2.4 for various steps per year. In particular, we see that the prices
computed with this method are already relatively close to the true value for a very low number of paths.



Chapter 7

Calibration

No model can be used in practise without a reliable and reasonably quick calibration scheme.
We therefore describe here how the model (3.7) can be calibrated using the previously discussed
Monte-Carlo scheme.

One of the strengths of the model is that it provides two levels of calibration: one initial full
calibration of all states and all parameters of the model, and a second, much faster recalibration
of the state parameters only. This second recalibration scheme is used throughout the day or
even for longer periods, while the full calibration only need to be executed if the markets move
considerably.

7.1 Notation and Overview

First let us clarify the exotic products we want to hedge. The term exotic is used to indicate
that there is no liquid market available to price this product.

Exotic payoffs

We extend the admissible payoff functions of definition 5.1 on page 69 to payoff functions which
can also depend on the paths of the prices of variance swaps (this allows us to write options on
variance swaps). As before, the key idea is to allow all measurable payoffs which are integrable
for all configurations of the model. Recall the definition of the market filtration FS,V = (FS,V

t )t≥0

defined in (4.14) on page 60. As in chapter 5, we will use superscripts to denote the dependency
of model quantities on the configuration ξ = (Z0, χ) with initial states Z0 = (ζ0, θ0,m0) and
parameters χ ∈ Υ.

Definition 7.1 (Exotic payoff) An exotic payoff function H with maturity T is a measurable
non-negative function

H : C+[0, T ]× C+[0, TH
1 ]× · · · × C+[0, TH

dH
] −→ R>0

for some reference maturities 0 < TH
1 < · · · < TH

dH
< ∞, such that for each ξ = (Z0, χ), the

terminal payoff

Hξ
T (ω) = H

((
Sξ

t (ω);V ξ
t (TH

1 )(ω), . . . , V ξ
t (TH

dH
)(ω)

)
t:t∈[0,T ]

)
(7.1)

102
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is integrable, i.e. Hξ
T ∈ L1

+(FS,V
T ) and its value at time t can be written as

Hξ
t (ω) = hχ

(
t; St(ω), Zt(ω)

)

in terms of a continuous function h which is at least once differentiable in S and Z.

Proposition 7.2 The function G defined in (6.7) is τ -invertible. More precisely, for all exotic
payoff functions H and all 0 < T1 < T2 < T3, the value Hξ

t of H at time t can be written as

Hξ
t = ĥχ

(
t, V ξ

t (t)(ω) ; Sξ
t (ω), V ξ

t (T1)(ω), . . . , V ξ
t (T3)(ω)

)

and H can locally be replicated as

Hχ
t = Hχ

t0
+

∫ t

t0

∆ξ
t dSξ

t +
3∑

j=1

∫ t

t0

νξ,j
t dV ξ

t (Tj)

t ∈ [t0, t0 + T1) with the hedging ratios

∆ξ
t := ∂S ĥχ(· · ·) and νξ,j

t := ∂V (Tj)ĥ
χ(· · ·) .

Proof – Corollary 4.21 on page 63. ¤

As a consequence, it is sufficient to hedge our exotic product with only three variance swaps
and the stock. The selection of these variance swaps will depend on the product: we assume
that each exotic payoff has up to three pillar dates which are “important” for the product.

Example 7.3 For a call on realized variance,
(

1
T

∫ T

0
ζt dt−K2

)+

,

the natural pillar date is T .

Example 7.4 A forward variance swap pays out the realized variance between two futures 0 <

T1 < T2. We denote by Vt(T1, T2) its value at any time t (see also (6.30) above).
A call on a variance swap (cf. example 1.3 on page 12) has the payoff

(
VT1(T1, T2)

T2 − T1
−K2

)+

Since
Vt(T1, T2) = Vt(T2)− Vt(T1) ,

T1 and T2 are natural pillar dates for an option on a variance swap.

Primary and Secondary Market Information

Let us assume that we observe the spot price S0 of the underlying and a series of variance swap
market prices V = (V(Tk))k for k = 1, . . . , dV with 0 < T1 < · · · < TdV

. We regard these prices
as primary information to which the theory developed in section 4.2 applies. We will use the
entire strip of variance swaps to calibrate the initial states

Z0 = (ζ0, θ0,m0)
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and, possibly, the two reversion-speeds (κ, c). Moreover, the pillar variance swaps (those vari-
ance swaps which have as maturity one of the pillar dates of the product) will be used to
instantaneously re-calibrate the state Z0 from the market any time later. This ensures that the
pillar variance swaps are always well marked, even if the market has moved. It also allows us to
compute “VarSwapDeltas”, i.e. hedging ratios with respect to variance swaps: the derivative of
the price of the exotic payoff is numerically approximated by computing the central difference
of the option price if the variance swap price is bumped upward and downward.

Next to stock and variance swaps, we also have secondary information in the form of traded
European option prices C := (C`)` with maturities τ` > 0 and strikes K` > 0 for ` = 1, . . . , dc.1

We assume (K`, τ`) 6= (Kr, τr) for r 6= ` and also that the Black&Scholes Variance-Vega2 of each
option is above, say, 0.01.3 Finally, we assume that for each date τ ∈ {τ1, . . . , τdC

}, the price of
an ATM option is provided, i.e. there is an ` ∈ {1, . . . , dC} such that (K`, τ`) = (1, τ).

The distinction between primary and secondary information stems from the underlying as-
sumption of our model: we have assumed throughout that the variance swaps along with the
stock are the basic traded contracts which we want to use to hedge our exotic products. The
European options are “just” used as a provider of information on the unknown parameters (6.2)

χ = (κ, c; µ, ν, η; α, β, γ; m̄; ρv, ρm, ρθ, ρv,θ) .

of the model.
This is not as superficial as it may sound: after all, the information contained in the prices

of European options is not sufficient to infer dynamical properties of a model: all information of
the surface is fully captured by an implied local volatility model such as Dupire’s [D96].4 Hence,
it is necessary to make some structural assumption in our model and to specify which options, or
combination of options, are more important for the calibration than others. (In the calibration
of classic stochastic volatility models this is often done by allowing the user to specify a “weight”
for each option.)

7.2 Numerical Calibration

The calibration of the model is separated into various steps on which we briefly want to comment.
The details follow in the next sections.

Phase 1: Market Data Preprocessing

The very first part of a calibration procedure should be a preliminary check of the input market
data.

We have assumed that we are given distinct quotes V = (V(Tk))k=1,...,dV
of variance swap

prices and also a set C = (C`)`=1,...,dC
of European call prices. Both price information are typically

slightly inaccurate for several reasons: quotes stem from different points in time, bid/ask spreads
are aggregated, illiquid option prices might be mismarked or there are plain errors in the data.

1As outlined in appendix 7, these assumptions are equivalent to assuming deterministic interest rates and a

deterministic forward curve of the underlying with proportional dividends.
2Variance-Vega is the derivative of the Black&Scholes call price function with respect to its variance parameter

(i.e. the derivative of BS in (6.31) with respect to V ).
3This condition ensures that the option is sufficiently sensitive to changes in the variance.
4See also the discussion at the end of section 2.2.3 on fitting versus structural.
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As a result, the input data itself may actually exhibit what we will call static arbitrage-
opportunities: possible combinations of options that provide a riskless profit. A typical example
is a butterfly with a negative price. A butterfly has the “hat” payoff

(ST − (K − k))+ − 2 (ST −K)+ + (ST − (K + k))+

k2

for k ¿ K. It is the second finite difference of the call price function K 7→ (ST −K)+; since this
function is convex, the butterfly is always positive. If its price is negative or zero, it is therefore
possible to enter a static position of options for zero or negative cost which has no probability
of a loss, but a non-zero probability of making a profit.

Definition 7.5 (Strict absence of arbitrage) We call a set of market prices strictly arbitrage-
free if there exists a non-negative martingale S on some stochastic base (Ω,F∞,F,P) such that
for each product, the market price equals the expectation of the payoff on S under P.

In that case we say that “S reprices the market”.

Since our input data are likely to be slightly erroneous, we can assume that if we encounter
a set of market prices which is not strictly arbitrage-free, the situation is a result of bad data
rather than an actual trading opportunity.

But now consider what we are actually going to do: we are going to try to find some model
parameters of an arbitrage-free model such that they fit as well as possible to the not arbitrage-
free prices. Hence, there is in inherent mismatch between the model prices and the market
data which has nothing to do with the quality of the choice of parameters. Nonetheless, the
numerical minimizer which is used to find the market parameters (see below) will still try to
minimize this intractable difference. At best, it will just waste some time. At worst, it will
abandon an otherwise better fit in search for a reduction of an error which cannot be removed.
In all cases, a meaningless objective value as a measure of the quality of the fit will be reported.

All in all, it is necessary to pre-process the market data to ensure that it does not exhibit
any inherently impossible configurations. For variance swap prices, this is straight-forward since
these prices just need to be increasing in time: in that case the standard Black&Scholes model
with the variance set to the variance swaps reprices the market (in our experience, the simplicity
of this condition actually means that these data are also much less likely to be wrong).

For the European options, ensuring absence of arbitrage is more complicated. We will discuss
an algorithm to detect all possible static arbitrage-conditions and we shall also present a second
algorithm which can “correct” arbitragable market data.5

Phase 2: Calibration of the state parameters

The next step of the calibration routine is what we will call the state calibration: we will use
the variance swap price function G given in (6.7) to calibrate only the states Z0 = (ζ0, θ0,m0)
and possibly also the mean-reversion speeds (κ, c) to the observed variance swap prices (with
increased weights for the pillar dates). This is very quick. The same algorithm is used for
intra-day recalibration of the states to provide instantaneous hedging ratios for exotic products.

5The above discussion applies to calibration problems in general: for example we have found that such pre-

processing greatly improves the numerical calibration of an implied local volatility function.
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Phase 3: Full parameter calibration

After the states Z0 and the mean-reversion parameters (κ, c) are determined, a parameter cali-
bration of the remaining parameters

χ̃ := (µ, ν, η; α, β, γ; m̄; ρζ , ρm, ρθ, ρζ,θ) (7.2)

is performed. It is the slowest part of the process and is executed in three subsequent steps:
first, we only calibrate the volatility-coefficients with an assumed zero correlation model to the
ATM options. Thereafter, we calibrate χ̃ in two steps to the full set of European options (one
step with a relaxed precision and a second step with the target precision).

7.2.1 Intraday Use

Once we obtained a reliable parameter set χ, the model can be used to price exotic payoffs H.
Of course, the market may have moved away from our initial market situation.

Recalibration

This is taken into account by an instant implication of the state variables Z0 from the pillar
date variance swap market prices: we simply run the state calibration again (with fixed reversion
speeds) with far larger weights on the pillar variance swaps and smaller (but not zero) weights
on the remaining swaps. This ensures that the model reprices the pillar variance swaps closely.

VarSwapDelta

Moreover, the same routine can be used to compute greeks with respect to the variance swap
prices: we can simply move one of the variance swap prices up and then down by, say, 0.5%,
imply new states Z±0 and reprice the exotic product. This yields via central differences an
approximation of the VarSwapDelta

νk := ∂V (Tk)Ĥr(χ; Ŝ0,V0(T r
1 ), . . . ,V0(T r

mr
))

≈ Hr(. . . , 100.5%V0(T r
k ), . . .)−Hr(. . . , 99.5%V0(T r

k ), . . .)
V0(T r

k )/100
.

Since the pillar variance swaps have a far larger weight than the other swaps, we obtain our
hedging ratios mainly in terms of the pillar variance swaps.

Note that parameter-hedging ratios as described in chapter 5 can also be computed using
the calibrated model by bumping the various parameters.

Summary: Assumptions and some Notation

Here is a brief summary of the market data we consider:

• We are given a set of variance swap market prices V = (V(Tk))k=1,...,dV
.

• Moreover, we observe a range of European call prices C = (C`)`=1,...,dC
with strikes K =

{K`}` and maturities and by T = {τ`}`. We will also write C(τ`,K`) := C`.
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Let dτ := #T . We denote by Kτ := {K ∈ K : ∃` : (K`, τ`) = (K, τ)} the option strikes
provided for the maturity τ and set dτ := #Kτ . We also write Kτ = {Kτ

1 , . . . , Kτ
dτ
}. We

also define Kτ
0 := 0 and C(τ, 0) := 1.6

We abbreviate K` := Kτ` . Recall that by assumption 1 ∈ K` for all `.

We also assume there is a zero price strike K∗ À maxK for which impose a zero call price
value, C(τ, K∗) := 0. We then define Kτ

dτ+1 := K∗, and set the call price for this strike to
zero. We also set K∗` := K`∪̇{0,K∗}.

• We want to price an exotic product H with pillar dates {TH
1 , . . . , TH

3 } ⊂ {T1, . . . , TdV
}.

7.3 Phase 1: Market Data Adjustment

In the first phase of the calibration, we will check whether the provided European option prices
are strictly arbitrage free according to definition 7.5. We will also discuss an algorithm which
can adjust given market data in a way which produces a “close” arbitrage-free set of prices.

The idea is to ensure that a discrete-state discrete-time martingale exists which reprices
the market. It is also possible to generate the respective transition densities. This has been
presented in [B06a] and we will discuss it in appendix D.

The key is the notion of Balayage-order :

7.3.1 The Balayage-Order

Definition 7.6 The Balayage-order between two measures µ and ν is defined as

µ ¹ ν iff
∫

f(x) µ(dx) ≤
∫

f(x) ν(dx)

for all convex functions f . We then say that ν is more expensive than µ.

Lemma 7.7 We have µ ¹ ν if and only if
∫

(x− k)+ µ(dx) ≤
∫

(x− k)+ ν(dx)

for all k.

For a proof, see corollary 2.63 in Föllmer/Schied [FS04]. The next theorem is due to Kellerer [K72].

Theorem 7.8 (Kellerer 1972) Let (µt)t∈J be a set of probability measures with expectation 1,
where J ⊆ R≥0 is some Borel-set.

Then, a martingale S = (St)t∈J with marginal distributions µt exists if and only if µ is in
Balayage-order, that is

µt ¹ µu

for all t < u with t, u ∈ J .
Moreover, S can be chosen as Markov process.

Theorem 7.8 will be our main tool. Note that it is stronger than Dupire’s [D96] result since it
is also applicable to non-continuous martingales.

6This implies that S is a true martingale, not a local martingale.
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7.3.2 Upper Pricing Measures

The link with theorem 7.8 to the question of strict arbitrage among a discrete set of option
prices is simply that a discrete set of option prices is strictly free of arbitrage if and only of for
each maturity τ ∈ T , there exists a measure µτ with

∫ ∞

0
(x−Kτ

i )+ µτ (dx) = C(τ,Kτ
i )

for all i = 1, . . . , dτ such that the resulting set (µτ )τ∈T is Balayage order.
The first question is therefore how we can construct a measure µτ for just one given maturity.

Note that for any true martingale E[ST ] = 1. Hence, we can set Kτ
0 := 0 and C(τ, 0) := 1.

Define then the first difference of the call prices, which is the call spread between two strikes:

∆iC(τ) :=
C(τ, Kτ

i+1)− C(τ,Kτ
i )

Kτ
i+1 −Kτ

i

i = 0, . . . , dτ . (7.3)

(recall that Kτ
dτ+1 = K∗ where K∗ was the zero price strike).

We also set ∆dτ+1C(τ) := 0.

Definition 7.9 We call a measure µτ compatible at time τ if and only if
∫

(x−K)+ µτ (dx) = C(τ,K)

for all K ∈ Kτ .

Following Föllmer/Schied [FS04] section 7.4, we have:

Proposition 7.10 A compatible measure µτ for τ exists if and only if the following conditions
hold

(a) Positivity: For all K ∈ Kτ ,
C(τ, K) ≥ 0 . (7.4)

(b) Monotonicity: For all i = 0, . . . , dτ − 1,

−1 ≤ ∆iC(τ) ≤ 0 . (7.5)

(c) Convexity: For all i = 1, . . . , dτ − 1,

∆i−1C(τ) ≤ ∆iC(τ) . (7.6)

In that case, we can define the upper pricing measure for τ by

µτ (dx) :=
dτ+1∑

i=0

δKi(dx)µτ
i . (7.7)

with

µτ
i :=

{
1 + ∆0C(τ) (i = 0)

∆iC(τ)−∆i−1C(τ) (i = 1, . . . , dτ + 1)
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Remark 7.11 Instead of monotonicity, it is actually sufficient to assert −1 ≤ ∆0C(τ) and
∆dτC(τ) ≤ 0 (since monotonicity of the call prices then follows from (7.6) and the requirement
that C(τ, 0) = 1 and C(τ,Kτ

dτ+1) = 0).
Also note that the above properties imply that 1 ≥ C(τ, K) ≥ (1−K)+.

Proof – We shall construct the requested measure. Let d := dτ and also omit the notion of τ at
the strikes.

Set

µ(dx) :=
d+1∑

i=0

µi δKi(dx) µi ∈ [0, 1] .

We have to identify µi which sum up to 1 and which render µ compatible in τ . First, let

qi := 1 + ∆iC(τ) (i = 0, . . . , d).

This is the discrete equivalent of P[Xτ ≤ K] = 1 + ∂KC(τ, K). From equations (7.5) and (7.6)
we see that 0 ≤ qi ≤ qi+1 ≤ 1.

Note that if ∆dC(τ) < 0 (which is the case if the call with the highest initial strike has a
non-zero price), then qd < 1. We hence set qd+1 := 1, i.e.∆d+1C(τ) := 0. That is, there is no
probability mass beyond the “zero price strike” Kd+1.

Also note that we may have q0 > 0 which reflects a possibility of default (since we construct
a positive martingale, zero will be an absorbing state).7

Now define
µi := qi − qi−1 (i = 1, . . . , d + 1) (7.8)

and µ0 := q0. All µi are then non-negative for i = 0, . . . , d + 1 and they add up to one.
Now let i ∈ {−1, 0, . . . , d + 1}. Then,

d+1∑

j=i+1

Kjµj =
d+1∑

j=i+1

Kj (qj − qj−1)

=
d+1∑

j=i+1

Kj (∆jC(τ)−∆j−1C(τ))

= −∆iC(τ)Ki+1 + 0 +
d∑

j=i+1

(Kj −Kj+1)∆jC(τ)

= −∆iC(τ)Ki+1 −
d∑

j=i+1

(C(τ, Kj+1)− C(τ, Kj))

= −C(τ, Ki+1)− C(τ, Ki)
Ki+1 −Ki

Ki+1 + C(τ, Ki+1) + 0

= −C(τ, Ki+1)Ki − C(τ, Ki)Ki+1

Ki+1 −Ki

On the other hand,

Ki

d+1∑

j=i+1

µj = Ki

d+1∑

j=i+1

(qj − qj−1) = Ki(qd+1 − qi)

7This can be avoided by adding a very low strike K = ε > 0 with a call price value equal to intrinsic value.
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= Ki(∆d+1C(τ)−∆iC(τ))

= −C(τ,Ki+1)− C(τ, Ki)
Ki+1 −Ki

Ki

Hence

Eµ

[
(X −Ki)+

]
=

d+1∑

j=i+1

(Kj −Ki)µj

= −C(τ,Ki+1)Ki − C(τ,Ki)Ki+1

Ki+1 −Ki
+
C(τ, Ki+1)− C(τ,Ki)

Ki+1 −Ki
Ki

= C(τ, Ki)

Thus, the measure µ has expectation 1 (by setting i = −1) and reprices the market. ¤

Remark 7.12 In the above construction of the measure µ, we used the “zero price strike” K∗ =
Kd+1 to account for the fact that a market price C(τ, Kτ

dτ
) > 0 leaves much room for possible

call prices beyond Kd. As long as integrability and convexity is preserved a compatible measure
could technically have an infinite support.

The name “upper pricing measure” is justified by the following observation:

Proposition 7.13 Let µτ be the upper pricing measure for τ .
Then µτ interpolates the call prices linearly.
Consequently,

(a) The measure µ dominates all compatible measures with support only on [0,K∗] in the
Balayage-order.

(b) If ν is any compatible measure, than µ is more expensive for all calls with strikes K ≤ Kdτ .

(c) If ν is any measure with Eν [ (X −Kτ
i )+ ] ≤ C(τ, Kτ

i ) for all i = 0, . . . , dτ + 1, then µτ

dominates ν in the Balayage order.

For the proof we will need the notion of the linear interpolation between call prices. To this
end, define

C∗(τ, K) :=
K −Ki

Ki+1 − ki
C(τ,Ki+1) +

Ki+1 −K

Ki+1 −Ki
C(τ, Ki) K ∈ [Ki,Ki+1) (7.9)

and C∗(τ, K) := 0 for K ≥ K∗.

Proof – First we show that µ = µτ interpolates the call prices linearly:

Eµ

[
(X −K)+

]
=

d+1∑

j=i+1

(Kj −K) µj

=
d+1∑

j=i+1

((Kj −Ki) + (Ki −K)) µj

= C(τ, Ki) + (Ki −K)
d+1∑

j=i+1

µj
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= C(τ, Ki) +
Ki −K

Ki+1 −Ki
(C(τ, Ki+1)− C(τ, Ki))

= C∗(τ, K)

Now we prove the last of the three statements in the proposition, which obviously implies the
first. Number two is just a simple extension.

Let ν be a compatible measure.
For K ∈ Kτ we have Eν [ (X −K)+) ] ≤ C(τ, K) = Eµ [ (X −K)+ ]. So let Ki < K < Ki+1

(we omit the explicit notion of τ). By convexity of the call price w.r.t. strike,

Eν

[
(X −K)+

] ≤ C∗(τ,K) = Eµ

[
(X −K)+

]
. (7.10)

i.e. (7.10) applied to µ is an equality. Hence, µ dominates ν. ¤

Call price functions

Proposition 7.10 makes it clear that the question whether some measures are in Balayage order
is a matter of the relationships between the call prices. We therefore define

Definition 7.14 A call price function c : R>0 → R>0 is a function which can be represented as

c(K) :=
∫

(x−K)+ ν(dx) (7.11)

for some probability measure ν with expectation 1 and support only on R≥0.
For a given probability measure ν with support on R≥0, its call price function is accordingly

defined by (7.11).

As a generalization of proposition 7.10 is (cf. Föllmer/Schied [FS04], lemma 7.23), we have

Proposition 7.15 A function c : R≥0 7→ [0, 1] is a call price function iff

(a) c is positive,

(b) c is decreasing,

(c) c is convex and

(d) c(0) = 1, limx↑∞ c(x) = 0 and c(x) ≥ 1− x for x ∈ [0, δ] and some δ > 0.

As a result c(x) ≥ (1− x)+ for all x.

Proof – Since c is convex and decreasing, its right-hand derivative c′ exists and is right-continuous
and non-decreasing. Since c(x) + x ≥ 1 close to 0, it follows that c′(0) ≥ −1 and therefore
c′(x) ≥ −1 for x ∈ R≥0. Let f(x) := 1 + c′(x), which is a positive, right-continuous and
non-decreasing function. These properties imply the existence of some positive σ-finite mea-
sure defined via ν̃[(a, b]] := f(b) − f(a) (cf. Aliprantis/Border [AB99] theorem 9.47 pg. 354 or
Karatzas/Shreve [KS98] pg. 51).

The properties limx↑∞ c(x) = 0 and c(x) ≥ 0 imply that limx↑∞ c′(x) = 0, hence we obtain
that ν∗ := ν̃[(0,∞)] = limx↑∞−f(0) = 0− c′(0) ∈ [0, 1]. The proof is complete by defining

ν(A) := (1− ν∗) δ0(A) + ν̃(A)
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for A ∈ B[R≥0]. ¤

We call one call price function c2 more expensive than another call price function c1 if and only
if c2(x) ≥ c1(x) for all x ∈ R≥0. Thanks to theorem 7.8 that is equivalent to saying that ν2 is
more expensive than ν1.

So the upper pricing measure µτ is just more expensive than all other measures which
are compatible with τ because it is the largest (since linear) convex interpolation between the
discrete call prices C(τ, ·)|Kτ .

We will now need the lower call price function of two such functions

Definition 7.16 Let c and e be two call price functions. Then,

c u e := sup { h : h(x) ≤ c(x) ∧ e(x) and h is a call price function.} (7.12)

is called the lower call price function of c and e.
For two measures µ and ν with call price functions c and e, we accordingly call the measure

µ u ν implied by c u e the lower measure of µ and ν.

We have that c u e(0) = 1 and that c u e is positive and convex (because the supremum of
convex functions is convex). It is decreasing by the properties of the supremum. Hence the
above definition makes sense because of the fact that (1 − x)+ ≤ c(x) ∧ e(x) ensures that the
set on the right hand side of (7.12) is not empty.

Also observe that µ u ν ¹ µ.

Definition 7.17 We call a set c = (cj)j=1,...,dτ of call price functions strictly arbitrage-free if
the implied measures are strictly arbitrage-free.

Notation 2 We call x ∈ R>0 an extremal point of c if

c(x + δ)− c(x)
δ

− c(x)− c(x− δ)
δ

=
c(x + δ)− 2c(x) + c(x− δ)

δ
> 0

for Lebesgue-almost all δ > 0.

In case c is piecewise linear (as it will be in most of our applications), the extremal points are
exactly those points where the slope of c changes.

7.3.3 Relative Upper Pricing Measures

The previous section showed that we can define an upper pricing measure for each maturity
under the conditions of proposition 7.10. However, this did not take into account the term
structure of the data we have.

For this reason, assume now that we have only two maturities τ1 and τ2 > τ1 with call
strikes K1 and K2, respectively. Recall that K∗` := K`∪̇{0,K∗}. We assume that proposition
7.10 applies and that we can construct two upper pricing measures µ1 and µ2.

Proposition 7.18 If K∗1 ⊇ K∗2, then the measures µ1 and µ2 are in Balayage-order (i.e., C is
arbitrage-free) if and only if C(τ1,K) ≤ C(τ2,K) for all K ∈ K2.
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Proof – Apply third statement of proposition 7.13. ¤

In this situation, since the calls of the later maturity must dominate the prices for the earlier,
we have to fit the convex τ1-call price function below those later prices.

Now assume that K∗1 ⊂ K∗2. In this case, the situation is more involved: The upper pricing
measure µ1 might be too expensive between strikes K2

i−1,K
2
i+1 for τ2. The solution is the

construction of relative upper call price measures:

Definition 7.19 Let µ = (µj)j=1,...,d with d ≡ dτ be the set of upper pricing measures. The set
of relative upper call price measures µ̄ = (µ̄j)j=1,...,d is then given by

µ̄d := µd (7.13)

µ̄j := µj u µ̄j+1 (j = d− 1, . . . , 1) . (7.14)

By construction, the set µ̄ is increasing with respect to the Balayage order, and each measure µ

has support on K̄j :=
⋃d

i=j K∗i .

Lemma 7.20 The market is strictly arbitrage-free if and only if the relative upper pricing mea-
sures reprice the market.

Proposition 7.21 The relative upper pricing measures dominate the marginals of any martin-
gale which reprices the market and whose marginals have support in [0,K∗]. For any martingale
which reprices the market, the relative upper pricing measure is more expensive for all calls with
strikes K ≤ Kτ

dτ
for τ ∈ T .

By theorem 7.8, there exists a Markov-martingale S with marginals µ̄, which we will call an
“expensive martingale”. (Note that it is not unique). It is shown in appendix D how such a
martingale can actually be constructed.

Proof of lemma 7.20– First of all, if the relative upper pricing measures reprice the market,
then the market is strictly arbitrage-free since µ̄ is in Balayage order.

Conversely, let j := max{j : µ̄j does not reprice the market}. Then j < d. Set T := τj , and
denote the call price function of µT by c and the call price function of µ̄j by c̄. Since the normal
upper pricing measure µj reprices the market and since µj º µ̄j , there exists K ∈ K∗j such that
c(K) > c̄(K). We have to show that this yields an arbitrage opportunity.

(a) First assume that K ∈ K∗j ∩ K∗j+1.

Since µ̄j+1 reprices the market, we have c̄j+1(K) = C(τ j+1,K) (where we denote by c̄j+1

the call price function µ̄j+1). Given c̄(K) = c(K)u µ̄j+1(K) < c(K) = C(τ j , k) this implies
an arbitrage opportunity at K: the call price with strike K for τk is more expensive than
the price at τk+1.

(b) So K ∈ K∗j ∩ K̄j+1 \ K∗j+1.

Define i := min{i > j : K ∈ Ki}. If c̄j+1(K) = C(τ i,K), we can apply the argument of
the point above. If c̄j+1(K) < C(τ i,K), then K is not extremal for c̄j+1.
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Now let K− and K+ be the two extremal points K− < K < K+ of c̄j+1 which are closest
to K (note that c̄j+1 is piecewise linear, so K± are well-defined). Then, c̄j+1|[K−,K+] is a
linear function.

Then there exists i−, i+ > j such that c̄j+1(K±) = C(τ i± , k±). But any valid call price
function for τ j must have c(K±) ≤ ci±(K±), which is not possible if c(k) is above the
linear interpolation c̄j+1|[K−,K+](K) between ci−(K−) and ci+(K+)

This ends the proof. ¤

Proof of proposition 7.21– If a martingale S reprices the market, then the market is strictly
arbitrage-free and µ̄ reprices the market, too. An argument similar to the above yields that µ̄τ

must then dominate the call prices of Xτ on the entire interval [0,Kdτ ]. ¤

The above discussion yields equivalent conditions to a strict arbitrage-freeness. We can employ
the results now to implement two algorithms, the first of which tests whether a surface is
arbitrage-free and the second of which produces such an arbitrage-free surface “close” to given
market data.

7.3.4 Test for Strict Absence of Arbitrage

Lemma 7.20 shows how to check mathematically whether a given call price surface C is arbitrage-
free. From an implementation point of view, the following steps are to be performed:

(a) Ensure the conditions of proposition 7.10 are satisfied for all maturities τ ∈ T . Otherwise,
the respective marginal itself is not free of arbitrage.

(b) Construct the upper pricing measure µdτ for the last maturity τdτ . Let K̄d := K∗d. Define
µ̄d := µd, and let c̄d be its call price function.

(c) For each j,

(i) Set K̄j := K∗j ∪ K̄j+1.

(ii) Let c̄j := cj u c̄j+1.
This can be done by the following algorithm:

i. Set f(x) := cj(x) ∧ c̄j+1(x) and denote by 1 = K0 < · · · < Km+1 = K∗ be the
strikes of K̄j .

ii. Define h0(x) as the line between (1, 1) and (K∗, 0).
iii. For each strike Ki, i = 1, . . . , m, now check whether f(Ki) ≥ hi−1(Ki) and set

hi := hi−1 in this case
If f(Ki) < hi−1(Ki) find the strike K` with ` < i such that its left hand side
derivative is less than

f(Ki)− hi−1(K`)
Ki −K`

(the left hand side derivative at 0 is −1). Such a strike must exist because hi−1

is convex.
Define the function hi as hi−1 on [0,K`], and as linear interpolation between K`

and Ki and Ki and Km+1 = 1, respectively.
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iv. We obtain c̄j := hm.

(d) Check if c̄j(K) = C(τ j , K) for all K ∈ Kj . If not, there is a arbitrage opportunity “in
time”.

Note that this algorithm also produces the relative upper pricing measures by means of their
call prices.

7.3.5 How to Produce a strictly Arbitrage-free Surface

The above algorithm can also be implemented in a linear programming (LP) framework. To this
end, we note that the conditions of proposition 7.10 are all linear conditions on the call prices C.

We will now discuss how this observation can be used to produce an arbitrage-free surface
from real life market data. As we discussed above, such data is likely to contain small violations
of arbitrage.

Let us define as before the sets

K̄j :=
dτ⋃

i=j

K∗i

and set δj := |K̄j | − 2. Define the vectors Kj = (Kj
0 , . . . , K

j
δj

)′ of strikes from K̄j and the

weighting functions wj := (wj
0, . . . , w

j
δj

)′ with wj
i := 1

Kj
i ∈Kj

. The weight wj is therefore zero

if there is no price C(τj ,K
j
i ) available from the market for Kj

i with maturity τj . Note that the
positive weights can be altered according to some user-choice.

Then define
sj
i := C∗(τ j , Kj

i )

where C∗ is the linear interpolation as defined in (7.9).

We intend to compute a set c = (cj)j=1,...,dτ of call price functions which is as close as possible
to the initial market data, i.e.

minimize ||~c− ~s||w (7.15)

where || · ||w is given in terms of some norm || · || using

||~x||w := ||~x ′w||
(recall that a prime ′ denotes the transpose of a vector). Here, we wrote ~c = (c1

1, . . . , c
1
δ1

, . . . , cdτ
1 , . . . , cdτ

δdτ
)

and similarly for s.
Clearly, we have to formulate conditions which constrain the minimization problem (7.15)

to arbitrage-free call price functions c.

Ensuring absence of strict arbitrage in strike

Now fix some j and define the ratio

αj
i :=

1

Kj
i+1 −Kj

i

for i = 0, . . . , dj . (When implementing this algorithm, we have to ensure that the strikes are
sufficiently distant from each other to avoid numerical problems.)

In the light of remark 7.11, the conditions of proposition 7.10 translate into
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(a) Bounded parameters 1 = cj
0 ≥ cj

i ≥ cj
dj+1 = 0 for i = 1, . . . , δj .

(b) Bounded first derivatives at the boundaries,

−1 ≤ αj
0c

j
1 + αj

0c
j
0 and αj

dj
cj
dj+1 + αj

dj
cj
dj
≤ 0

(c) Convexity: For i = 2, . . . , δj :

αj
i−1c

j
i + αj

i−1c
j
i−1 ≤ αj

i c
j
i+1 + αj

i c
j
i .

This can also be rewritten as the usual convexity condition

αj
i c

j
i+1 −

(
αj

i−1 + αj
i

)
cj
i + αj

i−1c
j
i−1 ≥ 0 .

Remark 7.22 In a similar approach to Härdle et al. [FHM03], we can reformulate the above
conditions in terms of the first derivatives, too:

βj
i := αj

i c
j
i+1 + αj

i c
j
i .

In any event all the above conditions are simple linear constraints on the call prices, which we
can write as

Ajcj ≥ bj (7.16)

for a suitable matrix Aj and a vector bj .

Strict arbitrage in time

Given now the matrices Aj , we also have to impose the condition that the call prices must be
ordered in the Balayage-order. However, since the function cj+1 will be defined on all strikes
on which cj is defined, proposition 7.18 yields that it is sufficient to ensure that cj is below
the linear interpolation of cj+1. Because of the convexity conditions on cj , this is automatically
satisfied if cj(Kj+1

i ) ≤ cj+1(Kj+1
i ) for all Kj+1

i ∈ K̄j+1 ⊂ K̄j .
Hence we find a (very sparse) matrix Bj such that

Bj

(
cj

cj+1

)
≥ 0 (7.17)

ensures that the call prices are increasing for all j = 1, . . . , dτ − 1.

Linear programming

In summary, we have found that the call price vector ~c must satisfy some linear constraints

U~c ≥ v

to ensure that the resulting call price functions c are strictly arbitrage-free. This can now be
used to compute a “closest” fit to the given market data by solving the program

minimize ||~c− ~s||w
U~c ≥ v

(7.18)

Note that this program will return the initial call prices C∗ if the market is strictly arbitrage-free
from the start.
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Remark 7.23 The above “full” linear program can be very extensive, if many maturities are
involved. In this case, the program can also be executed “blockwise” from the back, bootstrapping
the solution.8 This will not yield a true || · ||w-optimal result but is considerably faster.

Remark 7.24 If the sets Kj are very different from each other, many weights wj
i will be zero

and there is no unique solution to (7.18), which can produce unstable solutions.
As a remedy, the weight of an artificial call price can be set to some ε > 0.

Note, however, that in our experience this routine does not generally yield an appropriate
interpolation if the initial market data exhibits strong arbitrage. The resulting call price surface
can be very different from a user’s expectation and additional steps such as proper weighting
must be taken to ensure that the surface meets the desired properties (such as a tight fit around
at-the-money, for example).

7.3.6 Summary

In summary, the algorithm described in the last section is a valuable tool to preprocess the
available market data.

For index market data, we have found that the simpler algorithm mentioned in remark 7.23
is sufficient and by far faster (at least if used with a standard LP algorithm such as NAG’s
nag opt lsq no deriv, see the product documentation [NAG7]). We therefore use this algo-
rithm.

Discrete State Markov processes

The above algorithm yields statically arbitrage-free relative upper pricing measures. Hence, a
Markov process S must exist which has these marginal distributions. In [B06a] we have presented
an algorithm which is capable of finding transition matrices between the marginal distributions
such that the resulting Markov process has indeed the desired marginal distributions. This is
lined out in appendix D. The algorithm also takes into account assumed prices of forward-started
vanilla options.

7.4 Phase 2: State Calibration

After we have ensured that our call prices form an arbitrage-free set, the next step of the
calibration is to infer Z0 and (κ, c) from the variance swap market prices. To this end, we
assume that we are given variance swap weights w = (wk)k=1,...,dV

which reflect the importance
of the swaps for the global calibration.

If we have only one exotic product to price, then it is natural to use an increased weight of,
say, 10 for the pillar variance swaps and a weight of 1 for all other swaps.

We also assume that the weights are normalized, since this allows the comparison of fits
across different calibrations.

8Executing it from the back gives a tighter fit than executing it from the front: if we start from the front, a

high front call price will drive up the entire surface. If we executed it from the back, we have a tight bound on

all call prices.
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Our first approach is the problem

minimize
{ζ0, θ0,m0;κ, c} :

dV∑

k=1

wk‖G(Z0; Tk)− V(Tk)‖2
2 . (7.19)

This is a constrained non-linear optimization problem which can be solved relatively reliably
using methods such as NAG’s nag opt nlin lsq [NAG7] (the reason for the choice of the L2-
norm is that for this norm more efficient algorithms such as “sequential quadratic programming”
exist; see also Press et al. [PTVF02]). Since the function G is known analytically, its derivatives
are available in the minimization and (7.19) can be solved with virtually no delay.

Note, however, that minimization algorithms will usually only yield a local minimum. If a
previous calibration result (ζ̄0, θ̄0, m̄0, κ̄, c̄) is known it is therefore advisable to impose a penalty
on the objective function to ensure that the new calibration result is not too far away from the
initial position without actually improving the calibration result.

Moreover, it should be noted that variance swaps naturally increase in value with increas-
ing time-to-maturity. That implies that if equal weights w = (wk)k=1,...,dV

are used, then the
longer-maturity swaps will have a higher impact on the calibration result. To alleviate this, we
propose to minimize over the “variance volatility” (compare definition 1.1 on page 11) of the
variance swaps instead of their actual fair value.

Calibration Step 1:

minimize
{ζ0, θ0,m0; κ, c} :

dV∑

k=1

wk

∥∥∥∥∥∥

√
G(Z0; Tk)

Tk
−

√
V(Tk)

Tk

∥∥∥∥∥∥

2

2

+ λ(Z0, κ, c) (7.20)

where
λ(Z0, κ, c) := wζ(ζ0 − ζ̄0)2 + wθ(θ0 − θ̄0)2 + wm(m0 − m̄0)2

+wκ(κ− κ̄)2 + wc(c− c̄)2
(7.21)

for some appropriate penalties wζ , wθ, wm, wκ and wc. In view of the theoretical results in
section 5.3, that varying reversion speeds κ and c will impose arbitrage, we suggest in particular
using quite large weights wκ = wc = 1 for the two reversion speeds. We do not use weights for
the state parameters.

7.5 Phase 3: Parameter Calibration

7.5.1 ATM calibration

In the next step, we use the European option prices to infer the remaining parameters χ̃ :=
(µ, ν, η; α, β, γ; m̄; ρζ , ρm, ρθ, ρζ,θ).

Calibration Step 2:
In principle we once again run a minimization scheme

minimize
χ̃

:
dC∑

`=1

wc
`

∥∥∥C(Z0; χ; τ`, k`)− C`

∥∥∥
2

2
+ λc(χ̃) (7.22)

where C(Z0, χ; τ, k) is the model call price with maturity τ and strike k. The vector wc =
(wc

1, . . . , w
c
dC

) is once again a weight vector. It is suggested to leave it as user input with default
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values wc
` = 1/dC for all `. In any event, normalization to

∑dC
`=1 wc = 1 should be ensured.

Finally, λc is a quadratic penalty function just as defined in (7.21) above. We suggest penalties
for the cross-correlation term ρζ,θ of 0.1 and modest penalties of 0.001 for all other parameters.
Note that due to the structure of the model, the variance swap prices will not change if χ̃ is
altered.

As mentioned before, we have to revert to Monte-Carlo for the computation of the European
option prices.

We will use the scheme (6.29) introduced in the previous section 6.2 to simulate the variance
processes and we will apply the method discussed in section 6.2.4 to price the European options.
We also ensure that the dates {τ1, . . . , τdC

} are among the simulation dates 0 = t0 < t1 < · · · <
tM := T where T := maxj τj . We use Black & Scholes European option prices with the variance
equal to the variance swap price of the model as control variates for all maturities {τ1, . . . , τdC

}.

Remark 7.25 (Implications of Calibration with Numerical Approximations)
If we assume that N paths are used per simulation of the option prices, it means that the resulting
parameter vector χ̃ =: χ̃N does not necessarily minimize (7.22) but the approximate problem

minimize χ̃N :
dC∑

`=1

wc
` ‖CN (Z0;χN ; τ`, k`)− C`‖2

2 + λc(χ̃) (7.23)

where CN denotes the European option price computed with N Monte-Carlo paths. Obviously,
there is an inherent error in CN as opposed to C, and we cannot expect to obtain a better fit than
this error. In particular, it means that using more than N paths in subsequent option pricing
does not improve the pricing error of the reference instruments any further.

Managing the Random Number Generation

Following our previous remarks, we have to ensure that the random numbers used in one Monte-
Carlo estimations are the same as the number used in subsequent estimations: if the number of
steps and the number of paths is fixed, then for each step of each path, the random numbers
used in two estimations of the values of the European options should be the same (only the
parameters of the model change). This can be achieved by storing all the numbers used in a big
vector ahead of the computation.

The number of random variables required is 3MN (recall that we do not simulate the Brow-
nian motion B which drives the stock because we make use of section 6.2.4). If stored as float
numbers, this amounts to 24MN bytes of data. For example, if M = 1500 (200 steps per year
for the first 5 years and 100 steps per year for the next 5 years) and N = 10000, this requires
360 mega-bytes of memory, easily available on today’s desktop computers.9

Note that in a typical implementation of a least-squares minimization routine such as NAG’s
nag opt lsq no deriv [NAG7], not all the options will be computed in each step of the min-
imization (for example, during “line search”, the minimizer will compute the values of only a
single option).

Storing the numbers ahead of the simulation is then helpful since we have easy access to the
random numbers needed for the simulations of the paths up to the relevant maturity (by contrast,
if a standard random number generated were used, then we would actually have to generate all

9If we want to calibrate to very long term options, this might not be feasible. In this case, we recommend to

use a weak approximation scheme as discussed on page 97.
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the unused numbers to ensure that we always begin each path with the same number if we want
to simulate the process on a path after path basis). It is also helpful when implementing a
multi-threaded Monte-Carlo path generator (where paths are generated in parallel on different
processors).

7.5.2 Calibration in Steps

The calibration will be performed in several steps aimed at speeding up the process. We fix
the number of paths N , and the fixings t1 < · · · < tM . As usual for minimization methods,
the user is also required to provide a tolerance ε > 0 which describes the accuracy of the
minimization (7.23). We define a lower “trial” number of paths N1 := N/2 and relaxed tolerance
of ε1 :=

√
10ε.

Given (ζ0, θ0,m0; κ, c) we perform the following steps:

(a) ATM Calibration:
We first solve (7.23) for only the ATM options C` such that k` = 1. We also assume
vanishing calibration parameters ρζ = ρθ = ρm = ρζ,θ = 0. We use N1 paths and a
tolerance of ε1. The resulting parameter set is

χ̃1 = (µ, ν, η;α, β, γ) .

The motivation behind this approach is that the ATM option prices depend only very little
on the calibration parameters.10 The starting point for the calibration is provided by the
user and is typically the result of a previous calibration.

(b) Trial Calibration:
Starting in χ̃1, we now solve the full problem (7.23) for all options with N1 paths and a
tolerance of ε1 and obtain a parameter set

χ̃2 = (µ, ν, η; α, β, γ; m̄; ρζ , ρθ, ρm, ρζ,θ) .

(c) Final Calibration:
The last step is to start in χ̃2, and solve (7.23) for all options with N paths and the initial
tolerance of ε. The resulting parameter set

χ̃N = (µ, ν, η; α, β, γ; m̄; ρζ , ρθ, ρm, ρζ,θ) .

is used as final return value of the calibration.

7.5.3 Examples

In this sub-section we present some example calibrations. We have only used index data, and
our main focus was FTSE and STOXX50E data. We have removed all forward and interest
information as discussed in appendix A.2.

The routine has been developed in Microsoft Visual C++ .NET 2003 [MSVC7] and uses code
optimized for Pentium 4 processors. The numerical minimizer employed is nag opt lsq no deriv

from the NAG Build 7 package [NAG7].
10In fact, by our experience it is also worth fixing m̄ and γ to the previously calibrated values or values which

fit well by experience.
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All examples below have been computed on a dual P4 Xeon 4GHz machine with 2GB main
memory. The core Monte-Carlo engine is scalable and we have used one thread per available
processor.

We have used N := 7500 paths for the main routine and 150 steps per year.

Variance Swaps

Each data set contains a sequence of variance swap market prices. These prices are internal
quotes, but given the liquidity of the markets in question, these can be seen as market prices.
Figure 7.1 shows the fits of the variance curve functional to the market data. Following market
conventions, the value of a variance swap V (T ) is quoted in its annualized volatility

√
V (T )/T .

The parameter values are given in table 7.1.

Fit to the variance swaps, .STOXX50E 12/01/2006
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Fit to the variance swaps, .FTSE 11/01/2006
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Figure 7.1: Fit of the double-mean reverting functional (6.7) to FTSE and STOXX50E market data.
Note that the variance swap prices are quoted according to market standard using “variance swap
volatilites”, cf. (1.2).

STOXX50E FTSE
ζ0 0.015 0.011
θ0 0.030 0.021
m0 0.580 0.145
κ 3.027 3.418
c 0.013 0.058

Table 7.1: Calibration results for STOXX50E and FTSE. The model routinely produces high Short-
RevSpeeds κ and comparatively low LongRevSpeeds c, if they are calibrated alongside the state variables.

European Options

In addition to the variance swaps, the model is fitted to a strip of European options. We display
in figure 7.2 the fit of the model to a range of options. The calibration results are shown in
table 7.2.

We contrast this to the fit of the “reduced” one-factor model from example 3.6 on page 40,
where the short variance is given as the solution to the SDE

dζt = κ(θ(t)− ζt) dt + ν
√

ζt dWt

dθ(t) = c(m− θ(t)) dt .

}
(7.24)



CHAPTER 7. CALIBRATION 122

60
%



70
%



80
%



90
%



10
0%



11
0%



12
0%



13
0%



14
0%



0.09

0.67

1.5

3

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

(M
ar

ke
t-

M
od

el
)/

S
po

t

Strike/Spot

Years

Double mean-reverting model, .STOXX50E 12/01/2006

0.
8

0.
85



0.
9

0.
95



1

1.
05



1.
1

1.
15



1.
2

0.09

0.67

1.5

3.01

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

(M
ar

ke
t-

M
od

el
)/

S
po

t

Strike/Spot

Years

Double mean-reverting model, .FTSE 11/01/2006

Figure 7.2: Calibration of the double-mean reverting model to STOXX50E and FTSE market data. The
graphs show the difference in call prices (divided by spot) for maturities between 3 months to 3 years in
a strike range from 80% to 120%. The variance swap fits are shown in figure 6.2.

STOXX50E FTSE
ν 0.423 0.431
µ 0.119 0.229
η 0.355 0.363
α 0.500 0.547
β 0.501 0.629
ρζ -0.68 -0.80
ρθ -0.60 -0.57

Table 7.2: Calibration results for STOXX50E and FTSE. We have also set ε := 0.0001, m̄ := 0.0001,
ρζ,θ := 0, ρm := 0 and γ := 1.

This model features the same variance curve functional (6.6) as the full model. Since it is
essentially Heston’s model with time-dependent mean-reversion level, we can compute European
options on the equity relatively efficient, cf. Bermudez at al. [BBFJLO06]. Figure 7.3 shows that
fitting the remaining free parameters ν and ρ11 and to European options yields a much worse
fit than for the full model. The calibration results themselves can be found in table 7.3.

It should be noted that the fit can be improved considerably by using piece-wise time-
dependent correlation and VolOfVol parameters. This is shown in figure 7.4 on page 123.

STOXX50E FTSE
ν 0.543 0.820
ρ -0.90 -0.81

Table 7.3: Calibration results for STOXX50E and FTSE for the reduced model (7.24).

11The correlation ρ is the correlation between W and the Brownian motion B driving the associated stock price

process.



CHAPTER 7. CALIBRATION 123

60
%



70
%



80
%



90
%



10
0%



11
0%



12
0%



13
0%



14
0%



0.09

0.67

1.5

3

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

(M
ar

ke
t-

M
od

el
)/

S
po

t

Strike/Spot

Years

Reduced Model, .STOXX50E 12/01/2006

0.
8

0.
85



0.
9

0.
95



1

1.
05



1.
1

1.
15



1.
2

0.09

0.67

1.5

3.01

-0.50%

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

(M
ar

ke
t-

M
od

el
)/

S
po

t

Strike/Spot

Years

Reduced Model, .FTSE 11/01/2006

Figure 7.3: Calibration of the reduced model (7.24) to STOXX50E and FTSE market data.
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Figure 7.4: Calibration of the reduced model (7.24) with piece-wise constant VolOfVol and correlation
parameters to STOXX50E and FTSE market data.

Dynamics of the variance swap curve

Having calibrated both the full and the reduced model, we can now visualize the dynamics of
the variance swap curve, as driven by the model over time. For both the full model and the
reduced model (7.24) we compute sample paths for

(a) The 3m fixed time-to-maturity variance swap.

(b) Every year from today to 4y, the implied variance swap curve for variance swaps from 60
days to four years.

The results for four sample paths for each model are given in figure 7.5 and figure 7.6, respectively.
In general, the three-factor nature of the full model allows a much richer and more realistic

behavior: while the long term level of volatility in the reduced one-factor model is very “sticky”,
it is allowed to move with the market in the full model: note, in particular, the case of the
graph in the lower right corner of figure 7.5 where an upward trend of the level of the 3m fixed
time-to-maturity variance swap is accompanied by an overall increase of variance swap prices.
Compare this behavior with the top right graph in figure 7.6: while volatility is moving upward,
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the variance swap curve experiences a reversion of slope and is finally pulled back. This is a
typical drawback of one-factor mean-reverting models where the long-term level is fixed.
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Figure 7.5: Future shapes of the variance swap curve produced by the full model. The model allows
for various market scenarios, including down and upward trending volatilities. All quotes are given as
“variance swap volatility”.

7.5.4 Pricing Options on Variance

In this final section, we now show how the full and the reduced model compare when it comes
to pricing options on variance. Define the price of a forward variance swap as

Vt(T1, T2) := Vt(T2)− Vt(T1) = E
[ ∫ T2

T1

ζt dt

∣∣∣∣ Ft

]
.

We then priced the following three products, all of them quoted using the market convention
to divide the actual payout by twice the square-root of today’s variance swap price for the
respective period:

• Straight-forward calls on realized variance with payoff
(∫ T

0 ζt dt− k V0(T )
)+

2
√

V0(T )T

for maturities T of three months, six months and one year.

• Forward started calls on realized variance with payoff
(∫ T2

T1
ζt dt− k VT1(T1, T2)

)+

2
√

V0(T1, T2)(T2 − T1)
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Reduced model, roughly forward trending
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Figure 7.6: Future shapes of the variance swap curve produced by the reduced model. In comparison
to figure 7.5, the long-term volatility of the variance swap curves is far more “sticky”.

• Options on variance swaps with payoff
(
VT1(T1, T2)− k V0(T1, T2)

)+

2
√

V0(T1, T2)(T2 − T1)
(7.25)

payable at T1.

The results are collected in figures 7.8 to 7.11.

Remark 7.26 In all cases, we have computed the options as payoffs based on realized variance
as defined in standard contracts,12 i.e. we have in fact used

∑

i=1,...,n

(
log

Sti

Sti−1

)2

(7.26)

over business days 0 = t0 < · · · < tn = T instead of the quadratic variation
∫ T
0 ζt dt. This ensures

that the options are correctly priced for short maturities, cf. figure 7.11.

12For examples, see chapter B in the appendix.
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Calls on realized variance STOXX50E 12/01/2006
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Figure 7.7: Calls on realized variance. A detailed view of the 1y call is given in figure 7.8.
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1y calls on realized variance STOXX50E 12/01/2006
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Forward started calls on realized variance STOXX50E 12/01/2006 (1y into 2y)
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Figure 7.8: Calls on realized variance with one year maturity and forward started calls on realized
variance for one year into two years. We find that if the models coincide for the spot started options,
then they usually also give similar prices for the forward started version. This is in stark contrast to the
prices for options on variance swaps, cf. figure 7.9.
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Figure 7.9: Calls on a forward variance swap according to (7.25). Note the difference in the option
prices even for STOXX50E, for which the spot started and forward started options are very similar. The
difference in prices for options on variance swaps in the two models is due to the fact that the full model
allows more variation in the term structure of variance swaps, as can also be seen by comparing figures 7.5
and 7.6. This highlights the importance of the use of multi-factor models for pricing term-structure deals.
See also figure 7.10.
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ATM calls on variance swaps with different variance swap maturities STOXX50E 12/01/2006
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Figure 7.10: Term structures of ATM calls on variance swaps with time-to-maturity of one month,
three months and one year (here, we show the expected value of (VT1(T1, T2)− k V0(T1, T2))

+
/(T2−T1),

rather than the payoff (7.25)). The discrepancy between the full and the reduced model rises as the
time-to-maturity of the underlying variance swap increases. Also note the relative decline in time value
for the reduced model, which is a consequence of ζ of (7.24) converging to its invariant distribution.
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Figure 7.11: ATM calls on realized variance and quadratic variation in a Heston model with flat variance
swap term structure. The graph shows that while the approximation of realized variance via quadratic
variation works very well for variance swaps, it is not sufficient for non-linear payoffs with short maturities.
The effect is common to all variance curve models (or stochastic volatility models, for that matter).



Chapter 8

Conclusions

We have developed a new framework for modeling equity markets by introducing variance curve
market models. We have proposed using variance swaps in the same as bonds are used in Heath-
Jarrow-Merton interest models and we have shown how finite-dimensionally driven models can
be characterized.

We have discussed when general Markov-driven pricing models are complete and we have
applied this theory to variance swap curve models. We have also discussed theoretical and
practical aspects of “parameter-hedging” which is meant to reduce the risk of a change in a
parameter vector.

Finally, we have proposed a particular model. We have shown that this model indeed gen-
erates a true martingale process and how an efficient unbiased Monte-Carlo scheme can be
developed. We have also shown how this model can be calibrated to real life market data and
have commented on the impact of using multi-factor models when pricing options on variance.
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Appendix A

Variance Swaps, Entropy Swaps and

Gamma Swaps

In this appendix, we show how the method introduced by Neuberger [N92] is used to price
variance swaps and entropy swaps if a complete set of European options is traded for all
strikes and maturities. Standard references on this subject are Demeterfi et al. [DDKZ99] and
Carr/Madan [CM02]. Conceptually, we will now follow quite a different approach than before,
since we will assume in this section that the European options are the primary liquid instrument
and use these to derive the prices of the relevant swaps.

We will still assume that there are no interest rates and no dividends present. In the next
section A.2 we then show that this is equivalent to assume deterministic interest rates and repo
rates and that the stock pays deterministic proportional dividends.1 We will also discuss and
extension of entropy swaps, called gamma swaps, which are easier to explain to clients.

A.1 Basic Pricing and Hedging

The following proposition is central to the argument below:

Proposition A.1 Let f : R>0 → R be a twice differentiable function. Then,

f(x)− f(x0) = f ′(x0) (x− x0)

+
∫ x0

0
f ′′(k) (k − x)+ dk +

∫ ∞

x0

f ′′(k) (x− k)+ dk .

for x, x0 ∈ R>0.

Proof – Fundamental calculus shows

f(x)− f(x0) =
∫ x

x0

f ′(y) dy

=
∫ x

x0

(
f ′(x0) +

∫ y

x0

f ′′(k)dk

)
dy

= f ′(x0)(x− x0)
1In Bermudez/Buehler/Ferraris/Jordinson/Overhaus/Lamnouar [BBFJLO06], the impact of discrete cash div-

idends is explored.
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+1x≥x0

∫ x

x0

∫ y

x0

f ′′(k) dk dy + 1x<x0

∫ x0

x

∫ x0

y
f ′′(z) dk dk

= f ′(x0)(x− x0)

+1x≥x0

∫ x

x0

f ′′(k)
∫ x

k
dy dk + 1x<x0

∫ x0

x
f ′′(z)

∫ k

x
dy dk

= f ′(x0)(x− x0)

+1x≥x0

∫ x

x0

f ′′(k)(x− z) dk + 1x<x0

∫ x0

x
f ′′(k)(k − x) dk

= f ′(x0)(x− x0)

+
∫ ∞

x0

f ′′(k)(x− k)+ dk +
∫ x0

0
f ′′(k)(k − x)+ dk

¤

Neuberger’s [N92] formula to compute the price of a variance swap is a direct application of the
previous proposition (see also Demeterfi et al. [DDKZ99] for a practical discussion of hedging
issues and implementation).

Assumption 6 The standing assumption in this section is that S is a true continuous martingale
and that European option prices are traded for all strikes at the relevant maturities. As before,
we assume zero interest rates.

We denote by ζ the short variance of S (cf. proposition 2.2 on page 20). The time-t price of a
call with strike K and maturity T is denoted by

Ct(T, K) := E
[

(St −K)+
∣∣ Ft

]

and a put is denoted as
Pt(T, K) := E

[
(K − ST )+

∣∣ Ft

]
.

Recall that at any time t > 0, the quantity Vt(t) =
∫ t
0ζs ds is the realized variance up to t.

Hence, Vt(T ) − Vt(t) is the expectation of the remaining future value of a variance swap with
maturity T .

A.1.1 Variance Swaps

Proposition A.2 (Price and Hedge of a Variance Swap) Let K∗ ∈ R>0. The dynamic hedging
strategy for a variance swap is given by

1
2

∫ T

t
ζs ds = F (ST ,K∗)− F (St,K

∗)−
∫ T

t

(
1

K∗ −
1
Su

)
dSu (A.1)

with F (x,K∗) := x/K∗ − log x/K∗ − 1.
The payoff F (ST ,K∗)−F (St,K

∗) can be replicated by a static portfolio of European options
such that the price of a variance swap with maturity T at time t is given as

Vt(T )− Vt(t) = 2
∫ ∞

K∗

1
K2

Ct(T,K) dK + 2
∫ K∗

0

1
K2

Pt(T,K) dK (A.2)

−2F (St,K
∗) .
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Note the previous proposition also shows that both “cash-delta” (delta times the stock price)
and “cash-gamma” (the derivative of delta with respect to S, multiplied by S2) of a variance
swap are constant.

Proof – By definition (1.1), a variance swap pays out the quadratic variation of log S. Applying
Itô to F as defined in the proposition yields (A.1).

Applying proposition A.1 to F (·,K∗) with ∂xF (x,K∗) = 1/K∗ − 1/x and ∂2
xxF (x) = 1/x2

for x0 = K∗ gives

F (ST , K∗)− 0 = 0 +
∫ K∗

0

1
K2

(K − ST )+ dK +
∫ ∞

K∗

1
K2

(ST −K)+ dK

since F (K∗,K∗) = ∂xF (K∗,K∗) = 0. Taking conditional expectation yields the result. ¤

Apart from the mathematical pleasing result that variance swaps can be priced using European
options, we want to stress that the hedging strategy for a variance swap suggested by proposition
works extremely well in practise.2 As an example, we have used all historic STOXX50E spot
prices from January 1st 1992 to December 12th 2005 and have back-tested the discrete version
of (A.1): to this end, we have computed the floating 90-day realized variance for n = 1/1/1992
to n = 8/8/2005,

89∑

i=0

(
log

STn+i+1

STn+i

)2

, (A.3)

as well as its discrete hedge,

−2 log
STn+90

STn

+ 2
89∑

i=0

1
STn+i

(
STn+i+1 − STn+i

)
. (A.4)

(i.e. we have assumed that we purchased a log-contract up front). The impressive result is shown
in figure A.1. The results are similar for all major indices.

Remark A.3 In practical applications, it is more convenient to approximate E [F (ST ) ] from
above using a sequence of call and puts:

If f is a convex function with minimum f(x0) = 0 in x0, and if K∗ = Kc
0 < Kc

1 < · · · < Kc
m

and K∗ = Kp
0 > Kp

1 > · · · > Kp
m, then

f(x) ≤
m∑

i=1

wc
i (x−Kc

i )
+ +

m∑

i=1

wp
i (K

p
i − x)+

for all Kp
m ≤ x ≤ Kc

m where we define wc
0 = wp

0 = 0 and then inductively

wc
i :=

f(Kc
i )− f(Kc

i−1)
Kc

i −Kc
i−1

−
i−1∑

j=1

wc
j

wp
i := −f(Kp

i )− f(Kp
i−1)

Kp
i −Kp

i−1

−
i−1∑

j=1

wp
j .

For the variance swap with F (x) := x− log x− 1, this approximation is shown in figure A.2.
2This is particularly interesting in the light of remark 7.26 on page 125.
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Figure A.1: Realized variance versus its hedge (A.4).

Remark A.4 It should be noted that for continuous processes,

〈log S〉T =
∫ T

0
d〈log S〉t =

∫ T

0

d〈S〉t
S2

t

.

Therefore, some variance swap contracts specify the payoff

d

n

n∑

i=1

(
Sti − Sti−1

Sti−1

)2

instead of (1.1) on page 10. These formulations are not equivalent in the presence of dividends.

Remark A.5 The case of discrete cash dividends is discussed in depth in Bermudez et al. [BBFJLO06].

Remark A.6 (Market Conventions) In real markets, the transaction size for a variance swap
is denoted in “vega” units. The heuristic idea is as follows: if σ denotes the volatility of the
variance swap (i.e. the fair value is σ2), then the variance swap has a “vega” of 2σ.

Hence, if we were to protect a portfolio with an exposure of V “vega” via variance swaps, we
would have to buy N = V

2σ contracts. The quantity N is the actual notional of the trade, given
the requested “vega”.

A.1.2 Entropy Swaps

Recall from definition 5.14 on page 78 that the payoff of an entropy swap is defined as
∫ T

0
St 〈log S〉t =

∫ T

0
Stζt dt . (A.5)

Proposition A.7 (Price and Hedge of an Entropy Swap) Let K∗ ∈ R>0 and define G(x,K∗) :=
x log(x/K∗)− x + K∗. The dynamic hedging strategy for an entropy swap is given by

1
2

∫ T

t
Suζu du = G(ST ,K∗)−G(St,K

∗)−
∫ T

t
log

Su

K∗ dSu . (A.6)
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Approximation of x-1-log(x) from above
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Figure A.2: Approximation of F (x) := x− log x− 1 from above.

The payoff G(ST ,K∗)−G(St, K
∗) can be statically hedged with a portfolio of European options

such that the price of the entropy swap is

Ut(T )− Ut(t) = 2
∫ ∞

K∗

1
K
Ct(T, K) dK + 2

∫ K∗

0

1
K
Pt(T, K) dK (A.7)

−2G(St,K
∗) .

Proof – Note that ∂xG(x,K∗) = log x/K∗ and ∂2
xxG(x, K∗) = 1/x. Itô shows (A.6). Since

G(K∗) = ∂xG(K∗) = 0, proposition A.1 yields

G(ST )− 0 = 0 +
∫ K∗

0

1
K

(K − ST )+ dK +
∫ ∞

K∗

1
K

(ST −K)+ dK

which proves the claim. ¤

As in the case of a variance swap, an entropy swap is usually priced using the approach
discussed in remark A.3: figure A.3 shows the approximation of the function G. However, in
practise an entropy swap barely trades because unlike the variance swap, its contract is not
insensitive to certain dividend assumptions. This will be discussed in section A.2.

A.1.3 Shadow Options

It is instructive to consider an alternative proof of proposition A.7. To this end, note that at
time t, we have

Ct(T, K) = E
[

(ST −K)+
∣∣ Ft

]

= KStES

[ (
1
K
− 1

ST

)+
∣∣∣∣∣ Ft

]

= KSt PS
t (T, 1/K)
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Approximation of x log(x)-x+1 from above
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Figure A.3: Approximation of G(x,K∗) := x log(x/K∗)−x+K∗ from above. Note the striking similarity
to figure A.2.

where PS
t (T, k) denotes the “shadow” put with maturity T and strike 1/K, written on the

PS-martingale S−1 (as before, the measure PS is defined by PS [A] := E [ 1A St ] for A ∈ Ft).
We just have shown:

Lemma A.8 (Shadow Prices of Vanilla Options) The shadow prices of vanilla options are given
as

CS
t (T, k) = k

St
Pt(T, 1/k)

PS
t (T, k) = k

St
Ct(T, 1/k)

}
(A.8)

and are therefore available from the market.

Now,
Ut(T )

St
= ES

[ ∫ T

0
ζs ds

∣∣∣∣ Ft

]
= ES

[ 〈log S−1〉T
∣∣ Ft

]
(A.9)

is just a variance swap on the martingale S−1 under PS .
Hence, we can use (A.2) under PS and obtain for the strike 1/K∗

Ut(T )
St

− Ut(t)
St

= 2
∫ 1/K∗

0

1
k2
CS

t (T, k) dk + 2
∫ ∞

1/K∗

1
k2
PS

t (T, k) dk

−2F (1/St, 1/K∗)

=
2
St

∫ 1/K∗

0

1
k
Pt(T, 1/k) dk +

2
St

∫ ∞

1/K∗

1
k
Ct(T, 1/k) dk

−2F (1/St, 1/K∗)

=
2
St

∫ 1/K∗

0
k

1
k2
Pt(T, 1/k) dk +

2
St

∫ ∞

1/K∗
k

1
k2
Ct(T, 1/k) dk

−2F (1/St, 1/K∗)
(∗)
=

2
St

∫ K∗

0

1
K
Pt(T, K) dK +

2
St

∫ ∞

K∗

1
K
CS

t (T, K) dK
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−2F (1/St, 1/K∗)

In (∗) we have substituted K := 1/k, i.e. dK = −1/k2 dk. Multiplying by St yields the desired
result (A.7) since

StF (1/St, 1/K∗) = St

(
K∗

St
− log

K∗

St
− 1

)

= K∗ + St log
St

K∗ − St = G(St,K
∗) .

¤

Let us also mention another interesting application of “shadow options”, which can be formulate
in more general contexts.

Proposition A.9 (Delta in Stochastic Volatility Models) Assume that S is a martingale and
that the density of ST /S0 does not depend on S0. In this case, the “Delta” of European options
is readily available from the market as

∂S0C0(T,K) = ∂kPS
0

(
T,

1
K

)
=

1
S0

(
C0 (T,K)− K

S0
(∂KP0) (T,K)

)
. (A.10)

This proposition applies for example for a stroke Markov variance curve model (G, Z, ρ) (cf. defi-
nition 2.22) whose correlation functional ρ does not depend on S. It also applies to more general
processes such as jump processes etc.

Proof – Let Xt := ST /S0. We have

∂S0C0(T, K) = ∂S0E
[
(S0XT −K)+

]

= ∂S0

(
S0E

[(
XT − K

S0

)+
])

=
1
S0
C0 (T,K) +

K

S2
0

E [ 1ST≤K ]

=
1
S0
C0 (T,K)− K

S2
0

(∂KP0) (T, K) .

All quantities on the right hand side can be observed on the market. ¤

A.2 Deterministic Interest Rates and Proportional Dividends

It has been argued throughout the main text and in the previous section, that the assumption
of deterministic interest rates, deterministic repo rates and deterministic proportional dividends
is essentially equivalent to assuming no interest rates, repo rates or dividends when it comes to
pricing European options or options on realized variance. We will show here how a market of
European options and variance swaps on a dividend paying stock in a deterministic interest rate
environment can be transformed into a market without dividends and no interest rates. The
following discussion and a fundamental generalization to the case of deterministic cash dividends
can be found in Bermudez/Buehler/Ferraris/Jordinson/Overhaus/Lamnouar [BBFJLO06].
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We will also show that the situation is less clear-cut for entropy swaps. Indeed, we will
introduce what we will call a gamma swap, which is a version of an entropy swap which accounts
for dividends.

Assumptions 7 In this section, we assume that a deterministic short interest rate r = (rt)t≥0

prevails in the market. We also assume that holding the stock S = (St)t≥0 earns the holder a
proportional repo rate µ = (µt)t≥0 (this rate might be negative if holding the stock inflicts costs).
Finally, the stock is also assumed to pay discrete proportional dividends.

We model the proportional dividends as follows: at each of the ex-dividend dates 0 = τ0 <

τ1 < · · · we assume that the stock price S jumps according to

Sτk
= Sτk−e−Dk .

where St− := lims↑t St.
In this situation, the stock price S is given in terms of its “martingale part” M and forward F

St = FtMt .

The forward is determined by standard no-arbitrage arguments (cf. Hull [H05]) as

Ft = exp
{ ∫ t

0
(rs − µs) ds

}
Dt with Dt := exp



−

∑

k:τk≤t

Dk



 .

We denote by DFT := e−
R T
0 rt dt the discount factor from T .

The idea is now to reduce a market of European options and variance swaps on the underlying
S to a market in terms of the driftless price process M .

Assumption 8 We assume that the market of the stock and all observed European options is
complete and that M is a true martingale under the unique pricing measure P.

Proposition 2.2 shows that then there exists a Brownian motion B and a short variance
ζ ∈ Lloc(B) such that

Mt = Et

(∫ ·

0

√
ζs dBs

)
.

A.2.1 European Options

First, let us focus on European options. By put-call parity, it is clear that it is sufficient to
discuss on European calls. We therefore assume that for all strikes K and all maturities T ,
European options C(T,K) on S are traded. The price of the call C(T,K) is given as

C(T,K) = DFT E
[
(ST −K)+

]
.

A simple transformation shows that a call on M with strike K and the same maturity T can be
computed as

C(T,K) := E
[
(MT −K)+

]
=

1
DFT FT

C (T, KFT ) . (A.11)

Hence, a complete surface of European call prices on S yields also a complete surface of call
prices on M .
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A.2.2 Variance Swaps

Regarding variance swaps, we stick to the market convention that a typical variance swap will
“take out” the dividends in the variance estimation. This is achieved by adding back the
dividend into the return computation: in case of our stock S, a variance swap with maturity T

and business days 0 = t0 < · · · < tN = T pays therefore

VN (T ) :=
N∑

i=1

(
log

Sti−
Sti−1

)2

. (A.12)

As before, this quantity converges against

VN (T )
N ↑ ∞−→

∫ T

0
ζs ds = 〈log Sc〉T

where Sc represents the continuous part of S, which is in our situation given as

Sc
t =

St

Dt
= S0 exp

{ ∫ t

0
(rs − µs) ds

}
Et

(∫ ·

0

√
ζs dBs

)
.

Since Sc is continuous, we can apply the usual Itô-formula and obtain

〈log Sc〉T =
∫ T

0

1
(Sc

t−)2
d〈Sc〉t

= −2 log Sc
T + 2 log Sc

0 + 2
∫ T

0

1
Sc

t−
dSc

t

= −2 log ST + 2 logDT + 2 log Sc
0 + 2

∫ T

0
(rt − µt) dt + 2

∫ T

0

√
ζt dBt

= −2 log ST + 2 log FT + 2
∫ T

0

√
ζt dBt .

Taking expectations yields the same result as in proposition A.2 (the computation of E [ log ST ]
in terms of European options is independent of the actual dynamics of S as long log ST is
integrable at all).3

As a result, if European options with all strikes are traded at maturity T , we can price the
variance swap again by pricing a log-contract.

A.2.3 Gamma Swaps

The case of an entropy swap is less clear-cut mainly because of the way the contract can be
formulated. Let us define the payoff of an entropy swap just by adjusting the forward:

UN (T ) :=
N∑

i=1

Sti

Fti

(
log

Sti/Fti

Sti−1/Fti−1

)2

=
N∑

i=1

Mti

(
log

Mti

Mti−1

)2

. (A.13)

This simply recovers the original contract on the driftless underlying M . Since we have shown
in section A.2.1 that we can also recover European option prices on M , we are able to compute
the price U0(T ) := DFT ES

[ ∫ T
0 ζt dt

]
of an entropy swap using proposition A.7.

3Note that if the dividends Dk are stochastic, then E [ log FT ] 6= logE [ FT ].
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However, from an investor’s perspective, (A.13) is quite an unsatisfying formulation. The
martingale part M cannot be observed directly in the market, so the payoff looks very artificial.
This is alleviated by using a gamma swap or weighted variance swap (see appendix B.2) with
payoff

GN (T ) :=
N∑

i=1

Sti

S0

(
log

Sti−
Sti−1

)2

. (A.14)

The name “gamma swap” comes from the observation that it has nearly a linear cash-gamma
(actually, an entropy swap has a linear cash-gamma, but as we mentioned, such a product is not
attractive to investors). In the limit, we have

GN (T )
N ↑ ∞−→

∫ T

0

St

S0
d〈log Sc〉t .

Since
∫ T

0

St

S0
d〈log Sc〉t =

∫ T

0

St

S0
ζt dt ,

we get

E
[ ∫ T

0

St

S0
d〈log Sc〉t

]
=

∫ T

0
ES

[
Ft

S0
ζt

]
dt =

∫ T

0

Ft

S0
ES [ ζt ] dt .

The price of a gamma swap is therefore given by

Γ0(T ) := DFT E
[ ∫ T

0

St

S0
ζt dt

]
= DFT

∫ T

0

Ft

S0
∂T

U0(T )
DFT

∣∣∣∣
T=t

dt (A.15)

where U0(T ) denotes as before the price of an entropy swap.

Remark A.10 In practise, (A.15) is computed using a time-discretization so that the gamma
swap is a series of weighted entropy swaps.

Regarding hedging, the situation is less complicated. Once the contract is evaluated, Itô’s
lemma shows that

1
2

∫ T

0

St

S0
d〈St〉 = −

∫ T

0
log St dSt +

{
(ST log ST − ST )− (S0 log S0 − S0)

}
. (A.16)

As for the variance swap, we can back-test this strategy using its discrete version (cf. figure A.1
above). Under the assumption that we were able to buy the contract (ST log ST − ST ) and that
all our delta-hedging is covered by the initial premium, we again find that this hedge works very
well, as figure A.4 shows.

Moreover, figure A.5 shows, finally, the historical returns from both variance swaps and
gamma swaps versus the returns from the stock. In the current low volatility environment, both
payoffs behave very similar.
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.STOXX50E Realized Weighted Variance Hedge (90 days)
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Figure A.4: Realized weighted variance versus its hedge (A.16).

Payoffs of rolling 1y Variance and Gamma Swaps (STOXX50E)
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Figure A.5: Historic payoffs of variance and gamma swaps for STOXX50E since January 1992. Both
are mostly anti-correlated with index returns.



Appendix B

Example Term Sheets

In this chapter we provide a few real-life term sheets for common volatility products. The
term sheets are product sheets from Deutsche Bank’s Global Equity Derivatives (GED) Equity
Structuring Group. This group is now under the same umbrella as the former GED Global
Quantitative Research Team, and referred to as the Quantitative Products team.

These documents have been prepared for information purposes only. They do

not constitute an offer, solicitation, or an invitation to make an offer, to buy

or sell any security or financial instrument in any jurisdiction.
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Figure B.1: Term sheet for a standard variance swap.
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Global  Equity Derivatives   

 
 

 
The Price Weighted Variance Swap has similar characteristics to a standard Variance Swap.  The Buyer receives the 
realized daily variance of the Reference Security weighted by the previous day’s closing price, and thus has exposure to 
its price path.  Price Weighted Variance Swaps often cost less than standard Variance Swaps when the Reference Index 
has a downward-sloping skew of implied volatility.   
 

Instrument Type  Index Price-Weighted Variance Swap (“Gamma Swap”) 

Party A (Swap Seller)  Deutsche Bank AG London Branch 

Party B (Swap Buyer)  XYZ Client 

Currency  EUR 

Vega Notional  EUR XXX for 1 volatility point   

Notional 
EUR XXX which is equivalent to 

SetVol

Vega

 

 

2

100
 

Trade Date  25 July 2005 

Start Date  25 July 2005 

Final Valuation Date  16 June 2006 

Maturity Date  3 Currency Business Days after the Final Valuation Date 

Underlying  Euro Stoxx 50  Index ( Bloomberg code: SX5E <Index>) 

VolSet  ZZ% 

Equity Amount   A Euro amount equal to Notional   ( VolRealised
2 - VolSet

2 ) 

Where : 

RealisedVol =  

   
   

      

Days

tturn
tUnderlying

tUnderlyingDaysi

i
i

i 
 

 
  
 

 
  
 

 

 
1

2

0

Re

252  

 

   itReturn  =          
   
    

 
 

 
  
 

 

  1

ln
i

i

tUnderlying

tUnderlying
 

meanReturn =            Zero Mean 

   itUnderlying =   Closing of the Underlying on the Averaging Date tI   

   0tUnderlying =   Closing of the Underlying on the Start Date t0  

  )(t 1...Daysi i    =          Averaging Dates, every exchange business day between the Start  

                                   Date (excluded) to the Final Valuation Date (included). 

Days =                     Number of Averaging Dates 

Gamma Swap linked to .STOXX50E Index 
Draft Terms 25 July 2005  –  
(Zero Mean / Daily Observations)  

Figure B.2: The term sheet for a gamma swap.
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Figure B.3: Term sheet for a call on realized variance.
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Figure B.4: Term sheet for volatility swap.
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Figure B.5: Term sheet for a Napoleon.



Appendix C

Auxiliary Results

C.1 The Impact of incorrect Stochastic Volatility Dynamics

In this section, we want to present a standard “folklore” result which describes the impact of
specifying a stochastic volatility wrongly. It shows the particular shape of the profit/loss process
Γ which has been mentioned in section 5.1.

Assume that the real-market stock price process and its short-variance on W are given as
the unique solution to the SDE

dζt = at(ζt) dt + bt(ζt) dW 1
t

dSt = St

√
ζt d

(
ρtW

1
t +

√
1− ρ2

t W
2
t

)
.

Also assume that we are given a model which defines a stock price process S̄ and a short-variance
ζ̄ on a different stochastic base W̄ as the solution to the SDE

dζ̄τ = āτ (ζ̄τ ) dτ + b̄t(ζ̄τ ) dW̄ 1
τ

dS̄τ = S̄τ

√
ζ̄τ d

(
ρ̄τW̄

1
τ +

√
1− ρ̄2

τW̄
2
τ

)
.

We assume that S and S̄ are true martingales on their respective stochastic bases. For simplicity,
we also assume that ρ and ρ̄ are deterministic. For a bounded European payoff H : R>0 → R≥0

define
H̄(τ, s, z) := Ē

[
H(S̄T )

∣∣ S̄τ = s, ζ̄τ = z
]

.

This function solves the PDE

0 = ∂τ H̄(τ, s, z) + ∂zH̄(τ, s, z) āτ (z) (C.1)

+
1
2
∂2

ssH̄(τ, s, z) s2z +
1
2
∂2

zzH̄(τ, s, z) b̄τ (z)2 + ∂2
szH̄(τ, s, z) ρ̄t

√
zb̄τ (z)

with boundary condition H̄(T, s, z) = H(s).
Now assume that we mark the payoff constantly with the model, i.e. at all times t we assume

the value of H is given as
H̄

(
t, St, ζt

)

where St and ζt are the market quantities (we can deduce ζt from the known past path of S).
Via Itô,

dH̄
(
t, St, ζt

)
= dMt +∂τ H̄(t, St, ζt) dt
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+∂zH̄(t, St, ζt) at(ζt) dt

+
1
2
∂2

ssH̄(t, St, ζt) S2
t ζt dt

+
1
2
∂2

zzH̄(t, St, ζt) bt(ζt)2 dt

+∂2
szH̄(t, St, ζt) ρt

√
ζtbt(ζt) dt .

where M is a local martingale. Now we use (C.1) and replace ∂τ H̄(t, St, ζt) such that we obtain

dH̄
(
t, St, ζt

)
= dMt +∂zH̄(t, St, ζt) (at(ζt)− āt(ζt)) dt

+
1
2
∂2

zzH̄(t, St, ζt)
(
bt(ζt)2 − b̄t(ζt)2

)
dt

+∂2
szH̄(t, St, ζt)

√
ζt

(
ρtbt(ζt)− ρ̄tb̄t(ζt)

)
dt .

This computation shows the form of the “profit/loss” process in this simple example (it is the
sum of the terms of finite variation above). It also shows that it is particularly important to
capture the market variance properly in a region where the derivatives of H̄ with respect to ∂z,
∂2

zz and ∂2
zs are large.



Appendix D

Transition Densities under

Constraints

In this appendix, we will pick up the construction of relative upper pricing measures µ̄ = (µ̄τ )τ∈T
for a discrete set of European call prices. It has been shown in section 7.3, page 107ff. how a set
C = (C`)`=1,...,dC

of call prices can be checked for strict absence of arbitrage. In this case, the
measures µ̄τ are compatible with the observed call prices in the sense that

C(τ, K) =
∫

(x−K) µ̄τ (dx)

for all K ∈ Kτ (we stick to the notation of section 7.3 on page 106ff). We have also discussed how
a set C which is not strictly arbitrage-free can be modified to find a “close” strictly arbitrage-free
call price surface.

In this appendix, we will now demonstrate how we construct transition matrices Πj such
that

µj = Πj ′µj−1

for j = 1, . . . , dτ for a given strictly arbitrage-free set of measures µ = (µτ )τ∈T . This in turn
defines a discrete-state discrete-time Markov martingale S with these marginal distributions µτ .

The following exposition closely follows [B06a], where questions of pricing and possible ex-
tensions are also discussed.

D.1 Expensive Martingales

Let us assume that we are given a sequence of strictly arbitrage-free measures µ = (µτ )τ∈T
(think of the relative upper pricing measures) with masses only in the strikes 0 =: Kτ

0 < · · · <
Kτ

dτ+1 := K∗ for τ ∈ T (recall that dτ denotes the number of market strikes Kτ and that K∗ is
the zero price strike).

We can now apply theorem 7.8 which asserts there must be a Markov process S = (Sτ )τ∈T
which reprices the market C implied by µ. As before, we use the indices j = 1, . . . , d with
d := dτ := #T to refer to quantities related to the maturities τ1, . . . , τd.

Let us denote the unit vector from Rdj+2 by 1j for j = 1, . . . , d. We also use the notation
µj = (µj

0, . . . , µ
j
dj+1)

′ for the dj + 2-dimensional column vector of point masses µj
i := µj [Kj

i ].
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The transition-probabilities of S “from u to `” under a measure P are

Πj
u` :=

{
P[ Sj = Kj

` | Sj−1 = Kj−1
u ] if P[Sj−1 = Kj−1

u ] > 0,

0 otherwise.

for j = 1, . . . ,m (with, as usual, Sj := Sτj and S0 := 1). This yields a matrix

Πj :=





Πj
0,0 · · · Πj

0,dj+1
...

...
Πj

dj−1+1,0 · · · Πj
dj−1+1,dj+1





Hence a row represents the probabilities P[ Sj ∈ dx | Sj−1 = Kj−1
u ]. We know that such a kernel

exists, but how can we construct one? Let us formalize the notion of a stochastic kernel.

Definition D.1 We call a Matrix Πj = (Πj
u`) with dj−1 + 2 rows and dj + 2 columns a

Martingale-kernel at τj ∈ T iff

(a) it is positive Πj
u` ≥ 0,

(b) it is a conditional probability Πj1j = 1j−1 (all rows sum up to one) and

(c) it has the martingale property ΠjKj = Kj−1 (the mean of row u is Kj−1
u ).

We call such a kernel compatible with µ iff additionally

(d) is a transition kernel for µ, i.e. Πj ′µj−1 = µj.

(The initial kernel Π1 is just the transpose of µ1.)

Remark D.2 The set of compatible Martingale-kernels P is a convex set.

Definition D.3 (Most expensive martingales) Given Martingale-kernels Π = (Πj)j=1,...,m, we
call the Markov martingale S with S0 := 1 and transition probabilities

P[ Sj = Kj
` | Sj−1 = Kj−1

u ] := Πj
u`

the martingale of Π. If Π is compatible with the relative upper pricing measures µ̄ of a market
C, then S is a most expensive martingale.

D.1.1 Construction of a Transition Kernel

Now note that the properties of definition D.1 are in fact all linear conditions on each matrix
Πj . Indeed, let us fix some j (the notion of which we will omit in this subsection) and consider
the column vector of rows of Πi,

κ :=
(
Π0,0, . . . ,Π0,dj+1; Π1,0, . . . , Π1,dj+1; Πdj−1+1,0, . . . ,Πdj−1+1,dj+1

)′ (D.1)

We have κ ∈ RN with N := (dj + 2)(dj−1 + 2). The conditions 2 to 4 of definition D.1 can be
written as

A κ = x

B κ = y .
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Here we use the 2(dj−1 + 2)×N -matrix

A :=




1j ′ 0j ′ . . . 0j ′

Kj ′ 0j ′ . . . 0j ′

0j ′ 1j ′ 0j ′ . . .
...

0j ′ Kj ′ 0j ′ . . .
...

... . . . 0j ′ 1j ′ 0j ′

... . . . 0j ′ Kj ′ 0j ′

0j ′ . . . 0j ′ 1j ′

0j ′ . . . 0j ′ Kj ′




x :=




1
Kj−1

0

1
Kj−1

1
...
...
1

Kj−1
dj−1+1




and the (dj + 2)×N matrix

B :=




vj−1
0 0 0 . . . 0 vj−1

1 0 . . . 0
0 vj−1

0 0 . . . 0 0 vj−1
1 0 . . . 0

. . . . . .
. . .

0 . . . 0 vj−1
0 0 . . . 0 vj−1

dj−1+1




,

as well as

y :=




µj
0
...

µj
dj+1


 .

Hence, define the [(dj + 2) + 2(dj−1 + 2)]×N -matrix

M1 :=

(
A

B

)
and z1 :=

(
x

y

)
(D.2)

Now note that while the conditions encoded in M1κ = x1 admit at least one positive solution,
they are not linearly independent. This is due to the fact that both µj and µj−1 are probability
measures and that both have unit expectation:

Since they are probability measures, we have

1j ′µj = 1j−1′µ−1 = 1 (D.3)

Now µj is given as
µj = y = Bκ

hence, say, vj−1
dj−1+1 can be expressed as a linear combination of vj−1

u for u = 0, . . . , dj−1 + 1.
The unit expectation of µj and µj−1 on the other hand means

Kj ′µj = Kj−1′µ−1 = 1

so we can express for example vj−1
dj−1

in terms of the other variables.
Consequently, we can reduce the system (D.2) to

Mκ = z

by removing the last two rows of (M1|z1).
This yields
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Conclusion D.4 To find martingale kernels Π which are compatible with µ, we have to solve
the linear programming “feasibility” problems

{
M jκ = zj

κ ≥ 0
(D.4)

for M j ∈ RDj×Nj
with Dj := (dj + 2) + 2(dj−1 + 2)− 2 and N j := (dj + 2)(dj−1 + 2) as above.

This result is quite promising since linear programming problems can be solved efficiently and
are well-studied. Given that the matrices M j are very sparse, the solution of the LP problem
above is usually solvable in reasonable time.

Remark D.5 For practical implementation, the matrices M j can be further reduced by exploiting
the following facts

(a) For all states Kj
` with µj

` = 0 (i.e. states which have no mass in τj), the column (Kj
u`)u=0,...,dj−1+1

can be ignored.

(b) Equally, if µj−1
u = 0, then the entire uth row can be omitted.

(c) The states 0 and K∗ are absorbing and the respective rows are therefore trivial.

It also possible to limit the range of the conditional probabilities by imposing additional condi-
tions. However, it is not clear to us yet how this can be achieved while ensuring that a solution
to the new problem still exists.

D.2 Incorporating Weak Information

The previous section has shown how we can construct a “most expensive” finite-state martingale
if we are given a strictly arbitrage-free market. However, the mere fact that usually Dj ¿ N j

means that the system (D.4) has many solutions. Indeed, remark D.2 shows that the set of
solutions will be convex, hence as soon as there are just two possible solutions to (D.4), there
will immediately be an infinite number of additional possibilities.

Also observe that most algorithms which solve linear-programming problems (see, for exam-
ple Fang et al. [FP93]) will usually find extremal solutions.

Now, the various kernels Π which satisfy (D.4) differ in the way they evaluate non-European
functionals (while they agree for all European options). We can therefore choose to impose
further constraints to identify a particular kernel of interest.

Remark D.6 Note that the problem here is similar to a classical problem of pricing in an in-
complete market, but under constraints. In fact, we try to single out one pricing measure out of
a set of martingale measures.

The difference is that the various measures here do not need to be equivalent to each other.

D.2.1 Mean-Variance Pricing

One way to identify a unique solution to (D.4) is to impose an additional optimality criterion.
In principle, this could be some conditional mean-variance criterion.
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The martingale property yields ΠjKj = Ki
j−1 for each conditional expectation. The condi-

tional variance of the martingale of Π is therefore

ςj
i := E

[
S2

j − E
[

Sj | Sj−1 = Kj−1
i

]2
∣∣∣∣ Sj−1 = Kj−1

i

]
.

We can write this as
ςj
i = Πj KjIjKj − (

Ki
j−1

)2

where I denotes the dj × dj unity matrix. This is a linear equation in Π. Hence, it is possible
to minimize the variance over problem (D.4).

Other possibilities are possible. We want, however, concentrate on what we term “weak
information”.

D.2.2 Using Forward Started Call Prices

Let us fix some maturity τj . Assume that for this maturity, we have some “weak information”:
Approximate prices of options on Sj and Sj−1. For example prices which are probably correct
or for which we have a good estimate (for example, over-the-counter products which are not
liquidly traded and have high spreads). Let F j = { f j

i ; i = 1, . . . , zj } be some functions

f j
i (xj , xj−1) .

For example, these could be some “forward start calls”

f j
i (xj , xj−1) :=

(
xj

xj−1
− hi

)+

1xj−1>0

with strikes h ∈ {h1, . . . , hzj}. The price of such a function f under given pricing kernels
Π = (Πj)j=1,...,d compatible with some measures µ = (µj)j=1,...,d is then given as

dj−1+1∑

u=0

µj−1
u

dj+1∑

`=0

Πj
u` fu` .

where we used f j
u` := f(Kj

` ,K
j−1
u ). Let φu` := µj−1

u f j
u`, then we can write the above equation

in matrix notation conveniently as

µj−1′Πj f j
u` = Πj ′

(
µj−1 f j

u`

)
= Πj ′φf .

Considering both Πj ≡ κj and φf ≡ ϕf as vectors, we see that the price of f under Π is
given by

πj(f) = ϕ′fκj ,

which is once more just a linear equation in terms of κj . Hence, a set F j of functions f for each
maturity τj (j > 1) yields, for each j, an equation of the type

V jκj = πj .

Now assume we have “weak information” in the form of some estimated market prices π̃j . Then,
we can formulate



APPENDIX D. TRANSITION DENSITIES UNDER CONSTRAINTS 155

Conclusion D.7 The weakly constrained expensive martingale kernels Πj are given as the
solutions to the optimization problems





minimize ||V jκj − π̃j ||
such that M jκ = zj

κ ≥ 0

(D.5)

for M j ∈ RDj×Nj
and V j ∈ RRj×Nj

where Rj is the number of “weak information prices” at
τj.

Solutions to (D.5) can be found with straight-forward linear programming in case ||x|| :=
||x||∞ or ||x|| := ||x||1. In the more natural case ||x|| := ||x||2, we obtain a constrained lin-
ear least-squares programming problem, which can also be solved efficiently, see for example
Fang et al. [FP93]. The choice of a norm (which we could also equip with some additional
weighting) indicates how we see our “weak information”.

The resulting kernels can be used to price exotic options. Some straight-forward details on
this can be found in [B06a].
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Variance Curve Models, 25
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local volatility, 31
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martingale, 14
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Milstein scheme, 94
more expensive, 112
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option on variance, 60, 99
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predictable representation property, 22, 49
price, 49
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process Lipschitz, 87
profit/loss process, 68, 148
PRP, see predictable representation property

realized variance, 10
realized volatility, 12
recalibration, 102
relative upper call price measures, 113
relative upper pricing measures, 150

SABR, 43
secondary information, 104
shadow prices, 136
short variance, 23
skew, 23
state calibration, 105
static arbitrage-opportunities, 105
stochastic implied volatility, 6
Stratonovich, 33

conversion to Itô, 34
strict absence of arbitrage, 112

variance curve model, 22
variance swap, 10
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variance swap price functional, 60
variance swap volatility, 11
Variance-Vega, 104
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