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Realized Variance
Introduction

Equity market investors are interested in “trading volatility”

– Speculation 

– Hedging

- Ad-hoc “vega-hedging” against moves in volatility if Black&Scholes-type pricing 
models are used

Traditionally, both have been implemented using European options.

But European options are not very sensitive to volatility once spot 
moves away from the strike.

– Why don’t we trade volatility (or at least variance) directly?
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Realized Variance
Introduction

The realized variance of a stock price process S=(St)t over business 
days 0=t0<…<tn=T is given as the unbiased estimator 

– Inherent “zero-mean” assumption.

– The 252/n≈1/T factor “annualizes” the variance.

– For single stocks, dividends are taken out.
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Realized Variance
Introduction

That also makes sense from a “stochastic analysis” viewpoint:
If T is fixed but n↑∞, then we see that

by definition of the quadratic variation.

– This is also true if S has a drift and potentially jumps, hence the zero-mean 
assumption is justified in the limit.

In the forthcoming discussion, we will assume that realized variance 
is defined as quadratic variation.

The error is discussed in Barndorff-Nielsen et al (2004).
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Realized Variance
Assumptions

Assume that S is strictly positive, continuous, that it pays no dividends and
that the interest rates are zero. Hence, we may* write it on a stochastic base 
(Ω,P,F) as

– The one-dimensional Brownian motion B is adapted to the filtration F. 

– The short variance process ζ is a predictable, integrable and non-negative.

– Deterministic rates and proportional dividends can be taken into account
(forthcoming “Equity Hybrid Derivatives”, 2006)

Realized variance is then the non-negative quantity
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* If additionally its quadratic variation is absolutely continuous w.r.t. λ.
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Realized Variance
Variance Swaps

The simplest product on realized variance is a variance swap.

A variance swap is just a forward on realized variance:

– At maturity T it pays the realized variance occurred during the life of the 
contract (usually in exchange for a previously agreed fixed strike K).

– The price Vt(T) of a zero strike variance swap is just the expectation of the 
realized variance under an equivalent martingale measure:

– It can be hedged using a static position in a log-contract and delta-hedging 
with 1/St:
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Realized Variance
Variance Swaps

.STOXX50E Realized Variance Hedge (90 days)
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Realized Variance
Variance Swaps

The convex European log-payoff is usually approximated by a series 
of calls and puts,

The formula probably contributes to the fact that variance swaps are 
now liquidly traded for all major indices.

– An excellent reference is Demeterfi et al (1999).
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Realized Variance
Variance Swaps ∫

T
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Realized Variance
Variance Swap Markets

In particular in the US, the variance swap market is very liquid.

– Spread in terms of volatility is just 0.4 vol points, compared with 0.2 vol points for 
ATM European options.

– STOXX50E around 0.5 versus 0.25 points

– Bloomberg started quoting variance swaps Jan 06 – until now OTC.

VIX in the US
– Volatility index on SPX realized variance

– The VIX index states the floating one month variance swap price (“fixed-time-to-
maturity”)

– Future not very liquid due to problems in replication (constant roll-over of variance 
swaps involves rolling over of European options if position is hedged).
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Realized Variance
Beyond Variance Swaps

Since variance swaps are liquidly traded, there is no need to price them. 

Similarly, we do not need particular models to price other recently revived 
payoffs (they can mostly also be replicated using “model-free” arguments):

– Gamma swaps (or weighted variance swaps)

– Conditional variance swaps
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Realized Variance
Beyond Variance Swaps

But what about more complex products:

– European options on realized variance such as plain calls

– Options on Variance Swaps

– But also forward started options on the stock (cf. Bergomi 2005)
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Realized Variance
Beyond Variance Swaps

Very popular: bets on volatilty of volatility (VolOfVol) in the form of 
straddles on realized variance:

– The strike K is the variance swap strike (“ATM straddle”)

– Initial “vol-delta” is zero, but high gamma.

Also sought after: capped calls
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Realized Variance
Modelling volatility

How can we develop a model to price & hedge such payoffs?

The “perfect” model for all single-underlying equity products would be a 
stochastic implied volatility model, where the evolution of the implied 
volatility surface σT,K is directly described by a low-factor SDE (Brace et al 
2001, Cont et al 2002)

– Basic idea is to write (in one parametrization or the other) 

– If such a model is given, the all European option prices at all times are known.

– Hence, all variance swap prices are known.

– The stock price is the value of the just maturing zero-strike call.
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Realized Variance
Modelling volatility

Unfortunately, all known applications suffer from severe problems.

1. It is surprisingly complicated to “design” an implied volatilty parametrization
which is truly free of arbitrage (no negative butterflies, no negative calendar 
spreads and boundary conditions).

– This is essential to guarantee absence of “static” arbitrage.

2. Even given such a surface, its dynamics cannot be freely chosen: to ensure that 
the prices of European options are at least local martingales, we have to impose 
quite complicated constraints on the drift and volatility coefficients of the SDE for 
the implied volatility.

– This is necessary to guarantee absence of “dynamic” arbitrage”.

Other approaches in a similar vein are to model the implied local volatility 
surface of the stock, its implied density or simply the European option 
price surface directly.
→ Similar problems arise
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Realized Variance
Modelling volatility

However, in case of “option on variance”, intuitively it should be 
sufficient to model only the variance swaps: the idea is that variance 
swaps can be used to “delta-hedge” more complex options on 
realized variance.

– Of course, to obtain a useful model, we will also want to model the stock 
price itself and to develop a good concept of “skew”.

Mathematically, the term-structure of variance swaps reminds on the 
term-structure of discount bounds in interest rate models.

– It is therefore tempting to apply concepts from interest rate theory to the 
pricing of options on variance.

– A similar idea has been discussed here recently by Bergomi (2005)
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Variance Curve Models
Modelling volatility
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Variance Curve Models
Program

Instead of starting with S as in classic stochastic volatility models, let 
us first specify the dynamics of the variance swaps .

Then, construct a (local) martingale S which has the correct quadratic 
variation.

The correlation between the Brownian motion which drives S and the 
variance curve will function as a skew parameter.

The model shall also yield hedging ratios in terms of variance swaps; 
we discuss details on hedging in Markovian models.
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Variance Curve Models 
Forward Variance

Variance swap prices are increasing with maturity T.
– Their price at a later time t also depends on the past realized variance.

To alleviate these unpleasant properties, note that

can be differentiated in T to define the forward variance

– Note the similarity to the forward rate in interest rate theory.

– An important property is that forward variance can be zero. 
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Variance Curve Models
Classic approach

Assume we have a driving d-dimensional extremal Brownian motion 
W on the space (Ω,P,F).

Definition
A family v=(v(T))T≥0 is called a [local] Variance Curve Model if

1. For each T>0, the process v(T)=(vt(T))t∈[0,T] is a non-negative [local] 
martingale:

2. For each T>0, the initial variance swap prices are finite, i.e.

3. The curve vt (t) is left-continuous.
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Variance Curve Models
Classic approach

Properties

– The price processes of variance swaps,

are [local] martingales.

– The short variance process

is well defined, integrable and non-negative.
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Variance Curve Models
Classic approach

Properties
Given any standard Brownian motion B on (Ω,P,F), the process

is a square-integrable martingale, so the via B associated stock price

is a local martingale.
– B represents the correlation structure of S with v.

Theorem
For each variance curve model v and each Brownian motion B, the market

is free of arbitrage.
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Variance Curve Models
Classic approach – Musiela-Parametrization

As in interest rates, it is more convenient to work with fixed time-to-
maturities x:=T-t. Hence we define the Musiela parameterization

Starting in Musiela-parametrization

– Assume that 
Then, 

defines a local variance curve model in Musiela-parametrization.
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Variance Curve Models
Classic approach – Fitting the market

If v is represented as an exponential,

it allows us to fit the model easily to an observed market forward 
variance curve m0 by setting w0:=log m0 (cf. Dupire, 2004).

– This construction does not allow u to become zero and therefore 
excludes classic stochastic volatility model such as Heston’s.

This approach can be extended to any given model ubase by setting

– Mind effects on the martingale property of S.
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Variance Curve Models
Variance Curve Functionals

Problems with a specification with general integrands b(T):

– It is complicated to check whether u remains non-negative.

– In practice, it is not clear how to handle such integrands computationally.

Ideally, we want to write

for some suitable non-negative function G and an m-dimensional 
Markov-process Z.

The function is the “interpolation function” for the forward variances.
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Variance Curve Models
Variance Curve Functionals

Definition

1. A non-negative C2,2-function G:DxR+→R+ is called a Variance Curve 
Functional if 

for all T and z∈D where D is an open set in R≥0
m.

2. We denote by Ξ the set of all C=(μ,σ) for which the SDE 

starting at any point Z0∈D has a unique solution Z which stays in D.
– Time-dependency is included in this setup.
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Variance Curve Models
Variance Curve Functionals

Definition
We call C=(μ,σ)∈Ξ a consistent factor model for G if for any Z0∈D, 

defines a local variance curve model.

Theorem
This is the case if and only if Z stays in D and if

holds.
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Variance Curve Models
Variance Curve Functionals

Local Correlation and the Markov property
Given a consistent factor model C=(μ,σ)∈Ξ and a “correlation function” 
ρ:R+xD→[-1,1]d with |ρ|2=1, we can always define

such that the process (S,Z) is Markov and S is a local martingale (note that 
the SDE does not explode). 

– Local-Stochastic volatility “mixture models” are also part of this framework: they 
correspond to the case where S is one of the factors of Z.
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Variance Curve Models
Variance Curve Functionals

Market completeness
Assume that

– (S,Z) is Markov as on the previous slide.

– The variance swap price function

is invertible in an appropriate sense (cf. Buehler (2006)).

– For all smooth functions f whose derivatives all have compact support, the function

is once differentiable.

Then, the market of “relevant payoffs” is complete (i.e. those payoffs which 
depend only on the price history of S and the variance swaps).
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Variance Curve Models
Term-structure approach

The next logical step is to model the entire curve u as a process with 
values in a Hilbert space H.

– The follows the path laid by Bjoerk/Christensen (1999), Filipovic (2000), 
Filipovic/Teichmann (2004) and Teichmann (2005).

We omit this discussion here and refer to Buehler (2006).
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Variance Curve Models
Term-structure approach

The next logical step is to model the entire curve u as a process with 
values in a Hilbert space H.

– We follow the path laid by Bjoerk/Christensen (1999), Filipovic (2000), 
Filipovic/Teichmann (2004) and Teichmann (2005).

The main difference between variance curves and forward curves is 
that the curves u must remain non-negative (but can become zero).

– The problem is that the “non-negative cone” is a very small set.
Indeed it has no interior points.

– However, if G(D) is a sub-manifold with boundary of H, then it is sufficient 
to check whether u stays in G(D).
In this case we say G(D) is locally invariant for u.

– If G is moreover invertible, we can also directly construct a (locally) 
consistent factor model C=(μ,σ) for G.
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Variance Curve Models
Term-structure approach

Assume that the variance curve u is given as a solution in H to

where the coefficients β are locally Lipschitz vector fields.

The Stratonovic-drift for u is as usual

such that
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Variance Curve Models
Term-structure approach

Theorem (Filipovic/Teichmann 2004)
The sub-manifold G(D) is locally invariant for u iff

1. We have G(D)⊂dom(∂x),

2. In the interior of G(D), we have

3. On the boundary ∂G(D), 

holds.
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Variance Curve Models
Term-structure approach

If we can invert G, then C=(μ,σ) with

is a consistent factor model for G.
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Back to reality: Applications
How to model variance curves
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Variance Curve Models
Variance Curve Functionals – Linear mean-reversion

Example
A very basic example is the “linearly mean-reverting” functional:

for z1≥0 and z2,z3>0.
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Variance Curve Models
Variance Curve Functionals – Linear mean-reversion

Variance Swap Term Structure .SPX 10/12/2005

12

14

16

18

20

22

24

01/10/2005 01/10/2006 01/10/2007 01/10/2008 01/10/2009 01/10/2010 01/10/2011

Maturity

Va
ria

nc
e 

Sw
ap

 F
ai

r S
tri

ke

Market

Interpolation



40 Reference (apr02)

GME Quantitative Products Analytics

Variance Curve Models
Variance Curve Functionals – Linear mean-reversion

Question: What dynamics can a consistent process Z=(Z1, Z2, Z3) have?

The coefficients μ and σ have to satisfy

1. First, we see that 

Since no term x2ex appears on the left hand side, we must have σ3=0.

2. The same line of thought applied to

shows that we also have μ3=0.
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Hence, the speed of mean-reversion cannot be stochastic.
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Variance Curve Models
Variance Curve Functionals – Linear mean-reversion

For the other two parameters, we find that while σ is unconstrained,

In other words: the only consistent processes for this choice of G are 
of Heston-type
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SPX Spot leve l and 30-day realized volatility
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Heston path and 30-day realized volatility

0

100

200

300

400

500

600

1/14/2004 7/6/2009 12/27/2014 6/18/2020 12/9/2025 6/1/2031 11/21/2036

Sp
ot

 le
ve

l

0

10

20

30

40

50

60

70

80

90

100

Vo
la

til
ity

Heston

Heston Vol

Variance Curve Models
Why mean-reversion?

Unconstrained Calibration
ShortVol 14.4%
LongVol 28.7%
RevSpeed 0.23
Correlation -0.74
VolOfVol 26.3%



44 Reference (apr02)

GME Quantitative Products Analytics

Variance Curve Models
Variance Curve Functionals

Proposition
The observation that mean-reversion speeds must be constant holds for all 
polynomial-exponential functionals, i.e. if (pi)i are polynomials 

then the first n components must be constant (cf. Filipovic 2001 for interest 
rates).

A similarly restrictive result can be shown for functionals of the form

– The parameters in the exponent come in pairs, where one is twice as large as the 
other (again Filipovic 2001).
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Variance Curve Models
Variance Curve Functionals – “Double Heston”

Another example of the polynomial-exponential class is

– A consistent factor model for this G must have the form

which we call “double mean-reverting”.

– Quite a good fit for most indices (at least during the course of the last year).

– This is in effect Svensson’s interpolation function for interest rates.
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Variance Curve Models
Variance Curve Functionals – “Double Heston”
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Variance Curve Models
Variance Curve Functionals – “Double Heston”

Fitting Variance Swap Volatilities
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Variance Curve Models
Variance Curve Functionals – “Double Heston”

Such a model is discussed in “Equity Hybrid Derivatives” (2006) where 
we used

for a correlated vector of Brownian motions (½ < α,β ≤ 1).
– To calibrate it, we first fit the variance curve function itself.

– In a second step, we use European option prices close to ATM to calibrate the 
volatility and correlation parameters.

– Numerically quite tedious.

The stock price in this model is a martingale if the correlations between 
the BM which drives the stock and the BMs above are all non positive.
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Variance Curve Models
Variance Curve Functionals – “Double Heston”
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Variance Curve Models
Variance Curve Functionals – “Double Heston Lite”

Intuitively, a more-factor model is only necessary if we want to price 
options on variance swaps etc (→ later) 

A model with the same variance swap term structure, but which is much 
easier to handle numerically is

with piece-wise constant VolOfVol and correlation between stock and 
variance.

– European options on the stock can be priced using Fourier Inversion.

– Stock price is a martingale.

– But mind square integrability in this and the previous model.
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models
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The two models have the same initial variance 
swap term structure.
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

Fit to ATM European options on the stock
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

The two models have the same initial variance swap term structure.

Calls on realized variance
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

To assess the impact of using a multi-factor model to pricing more exotic 
options on variance, we now recalibrate the “VolOfVol” of the one-factor 
model such that we match the 1y ATM option on realized variance.

– We then price forward started options with reset date 1y and maturity 2y

– We also price options on the 1y to 2y variance swap
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

Options on 1y realized variance
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

Forward Started Options (1y into 2y)
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Variance Curve Models
Variance Curve Functionals – Impact of Multi-factor models

Option on a 1y variance swap, maturity 1y.
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Fitting the market with one-factor models 
A case study
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Fit the market
Using variance curve models in practise

To price vanilla options on realized variance, it is sufficient to use a one-
factor model which we fit to an observed market curve m0.

– The calibration of the one-factor model to the multi-factor model has shown that 
both feature very similar prices once matched for the ATM option.

Example 1:
Fitted Log-Normal (for κ=0 we obtain Dupire 2004, two-factor version 
discussed by Bergomi 2005)

– No closed form for European options. 
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Fit the market 
Using variance curve models in practise

Fitted Heston model

– We set θ(t):=κm0(t)+∂tm0(t) which needs to remain non-negative to ensure that 
the process ζ is well-defined.

– Martingale property of S preserved as long as correlation is not positive.

– European options on the stock price can be priced reasonably quick using 
Fourier-Inversion.
Piece-wise constant VolOfVol and Correlation parameters possible.
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Fit the market 
Using variance curve models in practise

Another alternative, but not very pretty from a modelling point of view:

– Use Heston’s model for variance and stock and apply deterministic time-change 
to both variance and stock to fit the variance swap market:

– Again, pricing of European options on the stock is quick.

– In terms of the variance process, changing time essentially means that 

– Mind additional effects on the stock price dynamics.
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Fit the market
Fitting stochastic volatility models

Fitted Heston vol parameters are calibrated to term-structure of ATM equity options.
Fitted LN vol parameters are fitted by hand to the 1y and 2y call for both models.

.STOXX50E ATM Calls on realized variance 24/11/2005
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Fit the market
Fitting stochastic volatility models

.STOXX50E 1y Calls on realized variance  24/11/2005
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Fit the market
Fitting stochastic volatility models

.STOXX50E 1m European options on Equity 24/11/2005
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.STOXX50E 3m European options on Equity 24/11/2005
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.STOXX50E 1y European options on Equity 24/11/2005
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.STOXX50E 2y European options on Equity 24/11/2005

-

5.000

10.000

15.000

20.000

25.000

80% 85% 90% 95% 100% 105% 110% 115% 120% 125%
Maturity

P
ric

e 
/ 2

*V
ar

S
w

ap
V

ol

DHL+2y
LN+2y
Market2y

Note that the calibration was performed only with the variance swaps and the 
ATM equity options …we get a remarkably good fit to the market.
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Variance Curves
Future
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Variance Curves
Future

“Statistical” variance curve models: PCA of historic data

– Work in progress (Kai Detlefsen, HU Berlin)

Challenges ahead

– Is it possible to go from the variance curve model to a stochastic implied 
volatility model - can the correlation function ρ be deducted from market 
data?

– Incorporation of stochastic interest rates and dividends (in particular long-
term deals could exhibit strong exposure to stochastic interest rates).

– Jumps both in the underlying and the variance process (witness S&P 
return graph earlier).

– Correlation between the variance curves between different underlyings.
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Thank you very much for your attention.

Details on the material presented here can be found in “Consistent Variance 
Curve Models”, Finance and Stochastics (2006), and in the forthcoming “Equity 
Hybrid Derivatives” (2006).
Hedging in Markovian markets is to be discussed in “Hedging in Factor Models” 
(joint work with J.Teichmann).

http://www.math.tu-berlin.de/~buehler/
http://www.dbquant.com

hans.buehler@db.com
NB we are generally interested in internship projects !!
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